基于反演控制的DC-MMC双闭环解耦控制策略研究

马文忠, 赵雨, 张彦, 张奎同, 韩嘉, 王昕睿, 王嘉星

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 485-492.

PDF(2266 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2266 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 485-492. DOI: 10.19912/j.0254-0096.tynxb.2021-0831

基于反演控制的DC-MMC双闭环解耦控制策略研究

  • 马文忠1, 赵雨1, 张彦2, 张奎同2, 韩嘉2, 王昕睿1, 王嘉星1
作者信息 +

DOUBLE CLOSED-LOOP DECOUPLING CONTROL OF DC-MMC BASED ON BACKSTEPPING CONTROL

  • Ma Wenzhong1, Zhao Yu1, Zhang Yan2, Zhang Kuitong2, Han Jia2, Wang Xinrui1, Wang Jiaxing1
Author information +
文章历史 +

摘要

随着大量分布式电源投入电网,分压式模块化多电平直流变换器(DC-MMC)得到广泛应用。针对模块化多电平变换器控制系统多输入多输出、强耦合非线性的特点,推导变换器拓扑数学模型,建立此类拓扑的电流和能量模型,提出一种基于反演控制的双闭环解耦控制方法。通过消除系统之间的耦合,采用模型反演理论对所建解耦模型进行控制,实现桥臂电流保持稳定并交流分量最小化,增强系统的抗扰动能力。在Matlab/Simulink中搭建DC-MMC双闭环模型,分析表明闭环控制模型具有良好的跟踪效果和调控特性,验证了提出的控制策略控制桥臂电流及高低压侧电流的可行性和有效性,为解耦控制的应用提供了参考依据。

Abstract

With a large number of distributed power supplies put into the grid, divided-voltage DCmodular multilevel converter (DC-MMC) has been widely used. Based on the characteristics ofmultiple input, multiple output, strong coupling and nonlinear of modular multilevel converter system, a converter topology mathematical model is deduced, a current and energy topology model is established, and a double closed-loop decoupling control method based on backstepping of control is proposed in this paper.By eliminating the decoupling in the system, the model backstepping theory is adopted to control the decoupling model. The current of the bridge arm is kept stable and the AC component is minimized to enhance the anti-disturbance ability of the system.The DC-MMC double closed-loop model is built in Matlab/Simulink. The results show that the closed-loop control model has good tracking effect and regulation characteristics, which verifies the feasibility and effectiveness of the proposed control strategy when controlling the current of the bridge arm and the current of the high and low voltage sides, providing a reference for the application of decoupling control.

关键词

直流-直流变换器 / 绝缘栅双极晶体管 / 控制系统分析 / 反演控制 / 解耦控制

Key words

DC-DC converters / insulated gate bipolar transistors(IGBT) / control system analysis / backstepping control / decoupling control

引用本文

导出引用
马文忠, 赵雨, 张彦, 张奎同, 韩嘉, 王昕睿, 王嘉星. 基于反演控制的DC-MMC双闭环解耦控制策略研究[J]. 太阳能学报. 2023, 44(1): 485-492 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0831
Ma Wenzhong, Zhao Yu, Zhang Yan, Zhang Kuitong, Han Jia, Wang Xinrui, Wang Jiaxing. DOUBLE CLOSED-LOOP DECOUPLING CONTROL OF DC-MMC BASED ON BACKSTEPPING CONTROL[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 485-492 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0831
中图分类号: TM423   

参考文献

[1] 徐政. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2013: 1-24.
XU Z.Flexible DC transmission system[M]. Beijing: China Machine Press, 2013: 1-24.
[2] 李琰, 刘超, 朱淼, 等. 面向LCC-HVDC与VSC-HVDC互联的DC-DC接口变换器拓扑与调制策略[J]. 高电压技术, 2020, 46(4): 1260-1268.
LI Y, LIU C, ZHU M, et al.Topology and modulation strategy of DC-DC interfacing converter for inter-connection between LCC-HVDC and VSC-HVDC[J]. High voltage engineering, 2020, 46(4): 1260-1268.
[3] 李彬彬, 张书鑫, 赵晓东, 等. 基于容性能量转移原理的高压大容量DC/DC变换器[J]. 中国电机工程学报, 2021, 41(3): 1103-1114.
LI B B, ZHANG S X, ZHAO X D, et al.Capacitive energy transfer principle based high-voltage high-power DC/DC converters[J]. Proceedings of the CSEE, 2021, 41(3): 1103-1114.
[4] 赵彪, 魏天予, 许超群, 等. 基于IGCT 的高压大容量模块化多电平变换器[J]. 中国电机工程学报, 2019, 39(2): 562-570.
ZHAO B, WEI T Y, XU C Q, et al.High-voltage and high-power modular multilevel converter based on integrated gate commutated thyristor[J]. Proceedings of the CSEE, 2019, 39(2): 562-570.
[5] 王小龙, 瞿七九. 1000 MW机组凝结水泵变频解耦控制在节能改造中的应用[J]. 浙江电力, 2021, 40(2): 112-118.
WANG X L, QU Q J.Application of variable frequency decoupling control for condensate pump of 1000 MW units in energy saving reconstruction[J]. Zhejiang electric power, 2021, 40(2): 112-118.
[6] 颜湘武, 崔森, 贾焦心. 虚拟稳态同步负阻抗的VSG功率解耦策略[J]. 电力系统保护与控制, 2020, 48(18): 102-113.
YAN X W, CUI S, JIA J X.Virtual steady state synchronous negative impedance of a VSG power decoupling strategy[J]. Powers system protection and control, 2020, 48(18): 102-113.
[7] 杨浩, 宋国杰, 滕馥遥, 等. 基于双序前馈解耦的光伏逆变器并网控制策略[J]. 太阳能学报, 2021, 42(1): 77-84.
YANG H, SONG G J, TENG F Y, et al.Grid-connected control strategy of photovoltaic inverter based in double sequence feed-forward decoupling[J]. Acta energiae solaris sinica, 2021, 42(1): 77-84.
[8] 陆荣秀, 刘淑丽, 杨辉, 等. 稀土萃取过程的广义预测解耦控制[J]. 控制工程, 2021, 28(1): 1-7.
LU R X, LIU S L, YANG H, et al.Generalized predictive decoupling control for rare earth extraction process[J]. Control engineering of China, 2021, 28(1): 1-7.
[9] 徐川, 黄孙伟, 李玥. 级联式STATCOM解耦控制策略[J]. 计算机应用与软件, 2021, 38(1): 93-98, 127.
XU C, HUANG S W, LI Y.Cascade STATCOM decoupling control strategy[J]. Computer applications and software, 2021, 38(1): 93-98, 127.
[10] HENG Y, SAEEDIFARD M.A capacitor voltage balancing strategy with minimized AC circulating current for the DC-DC modular multilevel converter[J]. IEEE transactions on industrial electronics, 2017, 64(2): 956-965.
[11] 王颖, 徐建英, 陈官如, 等. 基于快速趋近率的永磁同步电机滑膜控制[J]. 辽宁科技大学学报, 2018, 41(1): 46-51.
WANG Y, XU J Y, CHEN G R, et al.Sliding mode control for permanent magnet synchronous motor based on a fast reaching rate[J]. Journal of University of Science and Technology Liaoning, 2018, 41(1): 46-51.
[12] 马文忠, 孙鹏, 周冠宇, 等. 模块化多电平变换器两段式模型预测控制[J]. 电网技术, 2020, 44(4): 1419-1427.
MA W Z, SUN P, ZHOU G Y, et al.A two-stage model predictive control for modular multilevel converters[J]. Power system technology, 2020, 44(4): 1419-1427.
[13] 何志兴, 罗安, 熊桥坡, 等. 模块化多电平变换器模型预测控制[J]. 中国电机工程学报, 2016, 36(5): 1366-1375.
HE Z X, LUO A, XIONG Q P, et al.Model predictive control of modular multilevel converters[J]. Proceedings of the CSEE, 2016, 36(5): 1366-1375.
[14] 谭天乐, 尹俊雄, 周恒杰, 等. 无刷直流电机的模型预测与反演控制[J]. 上海航天(中英文), 2020, 37(6): 125-129, 142.
TAN T L, YIN J X, ZHOU H J, et al.Model Predictive and inversive control for brushless DC motor[J]. Aerospace Shanghai (Chinese & English), 2020, 37(6): 125-129, 142.
[15] 谭天乐, 尹俊雄. 永磁同步电机的模型预测与反演控制[J]. 计算机仿真, 2021, 38(4): 213-217.
TAN T L, YIN J X.Model predictive and inversive control for permanent magnet synchronous motor[J]. Computer simulation, 2021, 38(4): 213-217.
[16] XIONG Z G, Sun X X, HU M Q, et al.Active- disturbances-rejection-controller design of super- maneuverable flight based on dynamic inversion[C]//2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 8088-8092.
[17] CHEN H, HE K F, QIAN W Q.Attitude control of UAV based on PI dynamic inversion[C]//2016 35th Chinese Control Conference(CCC), Chengdu, China, 2016: 10668-10672.
[18] 张婷婷. 面向欠驱动系统的无模型反演控制策略研究及其动力学分析[D]. 北京: 北京化工大学, 2020.
ZHANG T T.Research on model-free backstepping control strategy and dynamic analysis for underactuated system[D]. Beijing: Beijing University of Chemical Technology,2020.
[19] 谢世杰, 曹玉华, 戴国平. 基于状态观测器的DC-DC升压变换器反演控制[J]. 计算机测量与控制, 2020, 28(5): 98-102,179.
XIE S J, CAO Y H, DAI G P.Backstepping control of DC-DC boost converter based on state observer[J]. Computer measurement & control, 2020, 28(5): 98-102, 179.
[20] 张营, 巩永光, 郭亚军. 自适应模糊反演控制在机床永磁同步电机位置控制中的应用[J]. 机床与液压, 2020, 48(5): 119-123.
ZHANG Y, GONG Y G, GUO Y J.Application of adaptive fuzzy backstepping control in machine tool permanent magnet synchronous motor position control[J].Machine tool & hydraulics, 2020, 48(5): 119-123.
[21] 顾亚京, 殷秀兴, 刘宏伟, 等. 直驱液压泵控马达自适应反演变桨距控制[J]. 太阳能学报, 2016, 37(12): 3219-3225.
GU Y J, YIN X X, LIU H W, et al.Adaptive backstepping pitch control of direct drive hydraulic pump-controlled-motor system[J]. Acta energiae solaris sinica, 2016, 37(12): 3219-3225.
[22] 张衡, 谷志锋, 尹志勇, 等. 基于精确反馈线性化的Boost变换器自适应反演滑模控制[J]. 电力电容器与无功补偿, 2020, 41(6): 120-124.
ZHANG H, GU Z F, YIN Z Y, et al.Adaptive backstepping sliding mode control of boost converter based on precise feedback linearization[J]. Power capacitor & reactive power compensation, 2020, 41(6): 120-124.
[23] 魏晓光, 王新颖, 高冲, 等. 用于直流电网的高压大容量DC/DC变换器拓扑研究[J]. 中国电机工程学报,2014, 34(S1): 218-224.
WEI X G, WANG X Y, GAO C, et al.Topologies research of high voltage and high power DC/DC converter used in DC grids[J]. Proceedings of the CSEE, 2014, 34(S1): 218-224.
[24] 李山, 司文旭, 陈艳, 等. 基于准PR控制的隔离型准Z源单相光伏并网逆变器研究[J]. 太阳能学报, 2018, 39(11): 3081-3089.
LI S, SI W X, CHEN Y, et al.Research on isolated quasi-Z-source single phase photovoltaic grid connected inverter based on PR control[J]. Acta energiae solaris sinica, 2018, 39(11): 3081-3089.
[25] 王秀云, 毛瑞鹏, 田壁源, 等. 基于PI与准PR联合控制的光伏并网电流优化[J]. 电力系统保护与控制, 2017, 45(7): 121-125.
WANG X Y, MAO R P, TIAN B Y, et al.Optimal control of photovoltaic grid-connected current based on PI and quasi-PR control[J]. Power system protection and control, 2017, 45(7): 121-125.
[26] 王擎宇, 卢振坤, 李燕, 等. 双线性DC/DC变换器混杂建模与优化控制[J]. 电力系统保护与控制, 2020, 48(19): 17-24.
WANG Q Y, LU Z K, LI Y, et al.Hybrid modeling and optimal control of bilinear DC/DC converters[J]. Power system protection and control, 2020, 48(19): 17-24.

基金

国家自然科学基金(51777216); 山东省自然科学基金(ZR2018MEE040; ZR2019MEE094)

PDF(2266 KB)

Accesses

Citation

Detail

段落导航
相关文章

/