针对光伏不确定性对电网的影响日益增加,该文提出一种考虑需求响应的源网荷经济调度方法。首先以光伏历史数据,利用非参数估计来拟合光伏出力,同时利用蒙特卡洛进行场景表征,并利用基于马氏距离场景缩减技术进行场景缩减;其次,结合随机规划方法,建立考虑需求响应下系统运行成本最小的电力系统源网荷经济调度模型;最后以IEEE39节点模型进行分析,结果表明采用所提出的优化模型可实现对光伏的不确定性调度,并能降低用户用电成本,对未来电力系统需求响应下的多能互补提供理论支撑。
Abstract
Response to the increasing impact of PV uncertainty on the grid, this paper proposes a source-grid-load economic dispatching method considering demand response. Firstly, with PV historical data, non-parametric estimation is used to fit the PV output, while Monte Carlo is used for scenario characterization and scenario reduction is performed by using the Marxian distance-based scenario reduction technique. Secondly, a source-grid-load economic dispatch model for power system considering the minimum system operation cost under demand response is established by combining stochastic programming methods. Finally, the IEEE39 node model is used for analysis, and the results show that the proposed optimization model can realize the uncertainty dispatch of PV and reduce the cost of electricity for customers, which provides theoretical support for the future multi-energy complementation under demand response of power system.
关键词
光伏 /
非参数 /
随机 /
需求响应 /
经济调度
Key words
PV /
non-parametric /
random /
demand response /
economic dispatch
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020,40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[2] 吴克河, 王继业, 李为, 等. 面向能源互联网的新一代电力系统运行模式研究[J]. 中国电机工程学报, 2019, 39(4): 966-979.
WU K H, WANG J Y, LI W, et al.Research on the operation mode of new generation electric power system for the future energy internet[J]. Proceedings of the CSEE, 2019, 39(4): 966-979.
[3] 丁涛, 牟晨璐, 别朝红, 等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报, 2018, 38(15):4318-4328, 4632.
DING T, MU C L, BIE Z H, et al.Review of energy internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4318-4328, 4632.
[4] SIAHKALI H, VAKILIAN M.Stochastic unit commitment of wind farms integrated in power system[J]. Electric power systems research, 2010, 80(9): 1006-1017.
[5] 叶林, 任成, 赵永宁, 等. 超短期风电功率预测误差数值特性分层分析方法[J]. 中国电机工程学报, 2016, 36(3): 692-700.
YE L, REN C, ZHAO Y N, et al.Stratification analysis approach of numerical characteristics for ultra-short-term wind power forecasting error[J]. Proceedings of the CSEE, 2016, 36(3): 692-700.
[6] ZHANG Z S, SUN Y Z, GAO D W, et al.A versatile probability distribution model for wind power forecast errors and its application in economic dispatch[J]. IEEE transactions on power systems, 2013, 28(3): 3114-3125.
[7] 赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化, 2015, 39(16): 8-15.
ZHAO W J, ZHANG N, KANG C Q, et al.A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of electric power systems, 2015, 39(16): 8-15.
[8] 陈瑶琪. 基于典型天气类型计及随机预测误差的光伏发电短期预测研究[J]. 中国电力, 2016, 49(5): 157-162.
CHEN Y Q.Short-term photovoltaic power prediction based on typical climate types and stochastic prediction error[J]. Electric power, 2016, 49(5): 157-162.
[9] DASH P, MAJUMDER I, DHAR S, et al.Intelligent energy management in microgrid using prediction errors from uncertain renewable power generation[J]. IET generation, transmission & distribution, 2020, 14(8): 1552-1565.
[10] 朱继忠, 熊小伏, 刘乔波, 等. 现货市场下计及风光联合预测误差的经济调度[J]. 太阳能学报, 2021, 42(5):450-458.
ZHU J Z, XIONG X F, LIU Q B.et al.Economic dispatching considering joint wind and PV power forecast error in electricity spot market[J]. Acta energiae solaris sinica, 2021, 42(5): 450-458.
[11] YAO L, WANG X L, DING T, et al.Stochastic day-ahead scheduling of integrated energy distribution network with identifying redundant gas network constraints[J]. IEEE transactions on smart grid, 2019, 10(4): 4309-4322.
[12] 董雷, 刘梦夏, 陈乃仕, 等. 基于随机模型预测控制的分布式能源协调优化控制[J]. 电网技术, 2018, 42(10): 3219-3227.
DONG L, LIU M X, CHEN N S, et al.Coordinated optimal control of distributed energy based on stochastic model predictive control[J]. Power system technology, 2018, 42(10): 3219-3227.
[13] MODARRESI M, XIE L, CAMPI M, et al.Scenario-based economic dispatch with tunable risk levels in high-renewable power systems[J]. IEEE transactions on power systems, 2019, 34(6): 5103-5114.
[14] ZHAO B, CONEJO A, SIOSHANSI R.Coordinated expansion planning of natural gas and electric power systems[J]. IEEE transactions on power systems, 2018, 33(3): 3064-3075.
[15] 杨秋霞, 高辰, 刘同心, 等. 考虑柔性负荷的含光伏电力系统模糊随机优化调度风险研究[J]. 太阳能学报,2020, 41(7): 142-151.
YANG Q X, GAO C, LIU T X, et al.Risk analysis on fuzzy random optimal dispatching of photovoltaic power consumption considering flexible load[J]. Acta energiae solaris sinica, 2020, 41(7): 142-151.
[16] 雷宇, 杨明, 韩学山. 基于场景分析的含风电系统机组组合的两阶段随机优化[J]. 电力系统保护与控制,2012, 40(23): 58-67.
LEI Y, YANG M, HAN X S.A two-stage stochastic optimization of unit commitment considering wind power based on scenario analysis[J]. Power system protection and control, 2012, 40(23): 58-67.
基金
中国南方电网有限责任公司科技项目(080016KK52180005)