基于天空辐射冷却系统的光伏组件降温研究

黄珂, 张吉, 张卓奋, 凌继红, 吕石磊

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 361-365.

PDF(1662 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1662 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 361-365. DOI: 10.19912/j.0254-0096.tynxb.2021-0862

基于天空辐射冷却系统的光伏组件降温研究

  • 黄珂1,2, 张吉3, 张卓奋4, 凌继红1, 吕石磊1
作者信息 +

COOLING PERFORMANCE STUDY OF PHOTOVOLTAIC MODULES WITH SKY RADIATIVE COOLING SYSTEMS

  • Huang Ke1,2, Zhang Ji3, Zhang Zhuofen4, Ling Jihong1, Lyu Shilei1
Author information +
文章历史 +

摘要

在南北向相邻两排光伏组件之间,背阳设置天空辐射冷却模块,不仅可有效利用屋顶面积,还可提升辐射冷却性能。辐射冷却模块产生的冷量通过水系统作用于光伏组件背面的换热模块,对光伏组件进行降温,提升光伏发电效率,延长使用寿命。实验结果表明:该系统在夏季和秋季可分别使光伏组件日平均温度降低13.6 ℃和10.6 ℃,发电效率可分别提升1.21%和0.96%。

Abstract

In the work, sky radiative cooling module is set between two adjacent rows of photovoltaic modules in the north-south direction, which can not only effectively use the roof area, but also improve the cooling performance. The cooling capacity generated by the cooling module is transferred to the heat exchange module on the back of photovoltaic modules through the water system, thus cooling the photovoltaic panels and improving the operation effect of the PV system. The experimental results show that the system can reduce the average daily temperature of photovoltaic panels by 13.6 ℃ and 10.6 ℃ in summer and autumn, and enhance power generation efficiency by 1.21% and 0.96% respectively.

关键词

辐射冷却 / 光伏组件 / 降温 / 发电效率

Key words

radiative cooling / PV modules / cooling / photovoltaic efficiency

引用本文

导出引用
黄珂, 张吉, 张卓奋, 凌继红, 吕石磊. 基于天空辐射冷却系统的光伏组件降温研究[J]. 太阳能学报. 2023, 44(2): 361-365 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0862
Huang Ke, Zhang Ji, Zhang Zhuofen, Ling Jihong, Lyu Shilei. COOLING PERFORMANCE STUDY OF PHOTOVOLTAIC MODULES WITH SKY RADIATIVE COOLING SYSTEMS[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 361-365 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0862
中图分类号: TK514   

参考文献

[1] 国家能源局综合司. 试点开发整县(市、区)屋顶分布式光伏光伏建筑一体化撬动万亿市场[EB/OL].https://www.163.com/dy/article/GDKcHPIK05372EVQ.html.
[2] BIWOLE P H, ECLACHE P, KUZNIK F.Phase-change materials to improve solar panel’s performance[J]. Energy and buildings, 2013, 62: 59-67.
[3] NIŽETIĆ S, GRUBIŠIĆ-ČABO F,MARINIĆ-KRAGIĆ I, et al. Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels[J]. Energy, 2016, 111: 211-225.
[4] RAHMAN M M, HASANUZZAMAN M, RAHIM N A.Effects of various parameters on PV-module power and efficiency[J]. Energy conversion and management, 2015, 103: 348-358.
[5] VALEH-E-SHEYDA P, RAHIMI M, PARSAMOGHADAM A, et al. Using a wind-driven ventilator to enhance a photovoltaiccell power generation[J]. Energy and buildsing, 2014, 73: 115-119.
[6] BAHAIDARAH H, SUBHAN A, GANDHIDASAN P, et al.Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions[J]. Energy, 2013, 59: 445-453.
[7] AKBARZADEH A, WADOWSKI T.Heat-pipe-based cooling systems for photovoltaic cells under concentrated solar radiation[J]. Applied thermal engineering, 1996, 16(1): 81-87.
[8] TINA G M, ROSA-CLOT M, ROSA-CLOT P, et al.Optical and thermal behavior of submerged photovoltaic solar panel: SP2[J]. Energy, 2012, 39(1): 17-26.
[9] CAZZANIGA R, ROSA-CLOT M, ROSA-CLOT P, et al.Floating tracking cooling concentrating (FTCC) systems[C]//2012 38th IEEE Photovoltaic Specialists conference, Austin, TX, USA, 2012: 514-517.
[10] HASAN A, MCCORMACK S J, HUANG M J, et al.Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics[J]. Solar energy, 2010, 84(9): 1601-1612.
[11] RUSSELL G F. Uniform surface temperature heat pipe and method of using the same: US04320246A[P].1982-03-16.
[12] BHATIA B, LEROY A, SHEN Y C, et al.Passive directional sub-ambient daytime radiative cooling[J]. Nature communications, 2018, 9(1): 5001.
[13] ZHANG J, ZHOU Z H, QUAN J Y, et al.A flexible film to block solar radiation for daytime radiative cooling[J]. Solar energy materials and solar cells, 2021, 225: 111029.
[14] TEO H G, LEE P S, HAWLADER M N A. An active cooling system for photovoltaic modules[J]. Applied energy, 2012, 90(1): 309-315.
[15] GREEN M A, HISHIKAWA Y, WARTA W, et al.Solar cell efficiency tables (version 50)[J]. Progress in photovoltaics: research and applications, 2017, 25(7): 668-676.
[16] SKOPLAKI E, PALYVOS J A.On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations[J]. Solar energy, 2009, 83(5): 614-624.
[17] LONG L S, YANG Y, WANG L P.Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells[J]. Solar energy materials and solar cells, 2019, 197: 19-24.
[18] ZHAO B, HU M K, AO X Z, et al.Radiative cooling: a review of fundamentals, materials, applications, and prospects[J]. Applied energy, 2019, 236: 489-513.
[19] SUN X S, SUN Y B, ZHOU Z G, et al.Radiative sky cooling: fundamental physics, materials, structures, and applications[J]. Nanophotonics, 2017, 6(5): 997-1015.
[20] MANDAL J, FU Y K, OVERVIG A C, et al.Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319.
[21] RAMAN A P, ANOMA M A, ZHU L X, et al.Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
[22] LU X, XU P, WANG H L, et al.cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art[J]. Renewable and sustainable energy reviews, 2016, 65: 1079-1097.
[23] LIU J W, YUAN J J, ZHANG J, et al.Performance evaluation of various strategies to improve sub-ambient radiative sky cooling[J]. Renewable energy, 2021, 169: 1305-1316.

基金

城市轨道交通数字化建设与测评技术国家工程实验室开放课题(2021HJ01)

PDF(1662 KB)

Accesses

Citation

Detail

段落导航
相关文章

/