针对高比例可再生能源并网,提出含风、光、火、蓄的高比例新能源电力系统多目标日前优化调度模型。该模型考虑在火电机组深度调峰及频繁爬坡等新工况下的火电机组运行成本、污染物惩罚成本以及可再生能源弃电成本,以系统运行成本最低、风光出力最大以及净负荷波动最小为优化目标,采用NSGA-Ⅱ算法进行优化求解。通过对某典型日不同调度场景进行仿真计算,结果表明所建立的系统运行总成本计算模型能够兼顾该系统的经济、环保与消纳,所提出的多目标优化调度策略能够促进高比例可再生能源的消纳,缓解火电机组的调峰压力,降低系统运行总成本,指导电力系统火电灵活性改造,保证电力系统安全、稳定、经济运行。
Abstract
Aiming at the grid connection of a high-proportion renewable energy, this paper proposes a multi-objective day-ahead optimal dispatch model for a high-proportion new energy power system including wind power, photovoltaic, thermal power and pumped storage. This model considers the operating costs of thermal power units, pollutants penalties and renewable energy curtailment under new operating conditions such as deep peak shaving and frequent ramps of thermal power units. This model takes the lowest system operating costs, the largest wind power and photovoltaic output and the smallest net load fluctuations as the optimization goals, and uses the NSGA-Ⅱ algorithm to optimize the solution. Through the simulation calculation of different scheduling scenarios on a typical day, the results show that the calculation model of the total operating costs of the system established in this paper can take into account the economy, environmental protection and consumption of the system. The multi-objective optimization scheduling strategy proposed in this paper can promote the consumption of high proportion of renewable energy, alleviate the peak shaving pressure of thermal power units, reduce the total costs of system operation, guide the thermal power flexibility transformation of power system, and ensure the safe, stable and economic operation of power system.
关键词
可再生能源 /
电力系统 /
调度优化 /
多目标 /
深度调峰
Key words
renewable energy /
power systems /
dispatching optimization /
multiple targets /
deep peak shaving
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 《中国能源》编辑部. 为力争二氧化碳排放2030年前达到峰值, 努力争取2060年前实现碳中和而奋斗![J]. 中国能源, 2020, 42(10): 1.
"China Energy" Editorial Department. Strive to achieve the peak of carbon dioxide emissions before 2030, and strive to achieve carbon neutrality by 2060![J]. China energy, 2020, 42(10): 1.
[2] 刘吉臻. 大规模新能源安全高效利用基础问题[J]. 中国电机工程学报, 2013, 33(16): 1-8.
LIU J Z.Basic issues of safe and efficient utilization of large-scale new energy[J]. Proceedings of theCSEE, 2013, 33(16): 1-8.
[3] 刘吉臻. 新能源电力系统建模与控制[M]. 北京: 科学出版社, 2015: 4-50.
LIU J Z.New energy power system modeling and control[M]. Beijing: Science Press, 2015: 4-50.
[4] 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7): 21-27.
LIN L, ZOU L Q, ZHOU P, et al.Multi-angle angle economic analysis of deep peak shaving of thermal power units under the condition of large-scale wind power grid connection[J]. Automation of electric power systems, 2017, 41(7): 21-27.
[5] 郭志忠, 叶瑞丽, 刘瑞叶, 等. 含抽水蓄能电站的可再生能源电网优化调度策略[J]. 电力自动化设备, 2018, 38(3): 7-15.
GUO Z Z, YE R L, LIN R Y, et al.Optimal dispatching strategy of renewable energy grid with pumped storage power station[J]. Electric power automation equipment, 2018, 38(3): 7-15.
[6] 张国斌, 陈玥, 张佳辉, 等. 风-光-水-火-抽蓄联合发电系统日前优化调度研究[J]. 太阳能学报, 2020, 41(8): 79-85.
ZHANG G B, CHEN Y, ZHANG J H, et al.Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(8): 79-85.
[7] 安磊, 王绵斌, 齐霞, 等. “风、光、火、蓄、储”多能源互补优化调度方法研究[J]. 可再生能源, 2018, 36(10): 1492-1498.
AN L, WANG M B, QI X, et al.Research on multi energy complementary optimal dispatching method of“wind, light, fire, storage and storage”[J]. Renewable energy, 2018, 36(10): 1492-1498.
[8] 王明松. 风-光-蓄-火联合发电系统的两阶段优化调度策略[J]. 电网与清洁能源, 2020, 36(5): 75-82.
WANG M S.Two-stage optimal dispatch strategy for wind-light-storage-fire combined power generation system[J]. Power system and clean energy, 2020, 36(5): 75-82.
[9] 王京景, 吴旭, 王正风, 等. 基于多目标模糊优化的抽蓄水火电联合调峰方法[J]. 电气技术, 2019, 20(11): 33-38, 45.
WANG J J, WU X, WANG Z F, et al.Joint peak shaving method of pumped storage thermal power based on multi-objective fuzzy optimization[J]. Electrical technology, 2019, 20(11): 33-38, 45.
[10] 宁志, 丛星亮, 陈永龙. 300 MW和1000 MW燃煤机组能耗和污染物排放特性[J]. 电站辅机, 2019, 40(1): 28-33.
NING Z, CONG X L, CHEN Y L.Energy consumption and pollutant emission characteristics of 300 MW and 1000 MW coal-fired units[J]. Auxiliary equipment for power station, 2019, 40(1): 28-33.
[11] 闫顺林, 谷兵, 艾书剑, 等. 火电厂发电污染成本核算及敏感度分析[J]. 电力科学与工程, 2016, 32(7): 62-67.
YAN S L, GU B, AI S J, et al.Cost accounting and sensitivity analysis of power generation pollution in thermal power plants[J]. Electric power science and engineering, 2016, 32(7): 62-67.
[12] ZHANG Y Q, ZHOU Q, ZHAO L, et al.The key technology for optimal scheduling and control of wind-photovoltaic-storage multi-energy complementary system[C]//2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 2020.
[13] 郭苏, 何意, 蒋川, 等. 风电-光伏-储热联合发电系统的多目标容量优化[J]. 太阳能学报, 2020, 41(11): 359-368.
GUO S, HE Y, JIANG C, et al.Multi-objective capacity optimization of wind-photovoltaic heat-storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(11): 359-368.
[14] 叶泽, 李湘旗, 姜飞, 等. 考虑最优弃能率的风光火储联合系统分层优化经济调度[J]. 电网技术, 2021, 45(6): 2270-2280.
YE Z, LI X Q, JIANG F, et al.Hierarchical optimal economic dispatching of wind-solar-fire-storage combined system considering optimal energy rejection rate[J]. Power system technology, 2021, 45(6): 2270-2280.
[15] AN Y, ZHAO Z H H, WANG S K, et al. Coordinative optimization of hydro-photovoltaic-wind-battery complementary power stations[J]. CSEE journal of power and energy systems, 2020, 6(2): 410-418.
[16] 王开艳, 罗先觉, 贾嵘, 等. 充分发挥多能互补作用的风蓄水火协调短期优化调度方法[J]. 电网技术, 2020, 44(10): 3631-3641.
WANG K Y, LUO X J, JIA R, et al.Short term optimal dispatching method for wind storage, water and fire coordination by giving full play to the complementary role of multiple energies[J]. Power system technology, 2020, 44(10): 3631-3641.
[17] GOU J, WANG X, SU Y C, et al.Research on optimal dispatching method of power systems with high proportion of clean energy based on multi-energy complementarity[C]//Fourth International Conference on Energy Engineering and Environmental Protection, Xiamen, China, 2020.
[18] 罗毅, 张若含. 风-光-水联合发电系统优化调度研究[J]. 太阳能学报, 2015, 36(10): 2492-2498.
LUO Y, ZHANG R H.Research on optimal dispatching of wind-light-water combined power generation system[J].Acta energiae solaris sinica, 2015, 36(10): 2492-2498.
[19] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术, 2020, 44(10): 3622-3630.
LI T, LI Z W, YANG J Y, et al.Complementary coordinated optimal dispatching of wind, water and fire storage multi-energy system considering peak shaving initiative[J]. Power system technology, 2020, 44(10): 3622-3630.
基金
北京市科技计划(Z201100004520022)