激光无线输能系统光伏特性及最大功率跟踪研究

熊振阳, 蔡榕, 徐国宁, 贾忠臻

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 21-29.

PDF(2347 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2347 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 21-29. DOI: 10.19912/j.0254-0096.tynxb.2021-0870

激光无线输能系统光伏特性及最大功率跟踪研究

  • 熊振阳1,2, 蔡榕1,2, 徐国宁1,2, 贾忠臻1,2
作者信息 +

RESEARCH ON PHOTOVOLTAIC CHARACTERISTIC AND MPPT OF LASER ENERGY TRANSMISSION SYSTEM

  • Xiong Zhenyang1,2, Cai Rong1,2, Xu Guoning1,2, Jia Zhongzhen1,2
Author information +
文章历史 +

摘要

针对激光无线输能系统接收端激光光伏阵列由于激光强度不均匀和不稳定而导致其输出P-U特性曲线呈现多峰、波动性强、稳定性差的问题,首先结合砷化镓激光光伏电池的输出特性,建立激光光伏电池阵列模型,分析其多峰产生的原因。然后利用捕猎搜索算法动态调节粒子群算法中粒子的搜索空间,改进粒子的控制机制,提高了算法的收敛速度、跟踪精度和稳定性,且可有效避免算法陷入局部最优解。最后基于交错并联Boost电路,通过Matlab/Simulink仿真验证了该算法在激光无线输能系统输出最大功率跟踪方面应用的有效性和可行性。

Abstract

The P-U characteristic curve of the PV array in the received side of the laser power transmission system performs multi-peak and has more volatility and worse stability due to receiving the laser with non-uniform and non-instability intensity. This paper built equivalent circuit model about the PV array on the basis of the output characteristic of the GaAs PV cells to analyze the reason for the multi peaks. And then applies Predatory Search Algorithm to dynamically adjust the search space in Particle Swarm Optimization Algorithm to optimize the control mechanism of the particles. The convergence speed, tracking accuracy and stability of the PSO Algorithm have been improved. And which can effectively avoid being trapped in the local optimal solution. Based on the interleaved boost circuit, the feasibility and effectiveness of the MPPT algorithm used in the laser power transmission system were verified by using Matlab/Simulink to simulate.

关键词

激光无线输能 / 光伏阵列 / 最大功率点跟踪 / 粒子群优化算法 / 捕猎搜索算法 / 多峰特性

Key words

laser power transmission / PV arrays / maximum power point tracking / particle swarm optimization (PSO) / predatory search algorithm / multi-peak characteristic

引用本文

导出引用
熊振阳, 蔡榕, 徐国宁, 贾忠臻. 激光无线输能系统光伏特性及最大功率跟踪研究[J]. 太阳能学报. 2022, 43(9): 21-29 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0870
Xiong Zhenyang, Cai Rong, Xu Guoning, Jia Zhongzhen. RESEARCH ON PHOTOVOLTAIC CHARACTERISTIC AND MPPT OF LASER ENERGY TRANSMISSION SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 21-29 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0870
中图分类号: TM724   

参考文献

[1] GLASER P E.Power from the sun: its future[J]. Science, 1968, 162(3856): 857-861.
[2] 程坤, 董昊, 蔡卓燃, 等. 高效率远距离激光无线能量传输方案设计[J]. 航天器工程, 2015, 24(1): 8-12.
CHENG K, DONG H, CAI Z R, et al.Scheme design of high efficiency long distance laser power transmission[J]. Spacecraft engineering, 2015, 24(1): 8-12.
[3] TANG L, ZHANG C W.Research on the characteristics of high-energy laser transmission in atmosphere[C]// 2011 Second International Conference on Mechanic Automation and Control Engineering, Hohhot, Inner Mongolia, China, 2011.
[4] ESRAM T, CHAPMAN P L.Comparison of photovoltaic array maximum power point tracking techniques[J]. IEEE transactions on energy conversion, 2007, 22(2): 439-449.
[5] ALHAMDAWEE E M, FARZILAH BINTT MAILAHN, MOHD RADZI M A, et al. Comparison of developed FLC and P&O MPPT algorithms for improving PV system performance at variable irradiance conditions[J]. World journal of engineering, 2016, 13(6): 494-499.
[6] 崔岩, 蔡炳煌, 李大勇, 等. 太阳能光伏系统MPPT控制算法的对比研究[J]. 太阳能学报, 2006, 27(6): 535-539.
CUI Y, CAI B H, LI D Y, et al.Comparative studies on the MPPT control algorithms of solar energy photovoltaic system[J]. Acta energiae solaris sinica, 2006, 27(6): 535-539.
[7] ISHAQUE K, SALAM Z.A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition[J].Enewable & sustainable energy reviews, 2013, 19(1): 475-488.
[8] NGE C L, MIDTGARD O M, NORUM L.Maximum power point tracking method under partial shading conditions[C]//2012 38th IEEE, Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, 2012.
[9] 陈亚爱, 刘明远, 张荣钢, 等. 阴影遮挡对光伏阵列影响的解决方法[J]. 电源技术, 2017, 41(5): 830-833.
CHEN Y A, LIU M Y, ZHANG R G, et al.Method for solving influence of shading on photovoltaic array[J]. Chinese journal of power sources, 2017, 41(5): 830-833.
[10] 胥芳, 张任, 吴乐彬, 等. 自适应神经网络在光伏中的应用[J]. 太阳能学报, 2012, 33(3): 468-472.
XU F, ZHANG R, WU Y B, et al.Self-adaption bp netural network for thr maximum power point tracking in photovoltaic[J]. Acta energiae solaris sinica, 2012, 33(3): 468-472.
[11] 袁晓玲, 陈宇. 自适应权重粒子群算法在阴影光伏发电最大功率点跟踪中的应用[J]. 中国电力, 2013, 46(10): 85-90.
YUAN X L, CHEN Y.Applications of adaptive particle swarm optimization algorithm to MPPT of shadow photovoltaic power generation[J]. Electric power, 2013, 46(10): 85-90.
[12] 王立乔, 鲍利斌, 孙孝峰. 基于变异粒子群算法的光伏系统最大功率点跟踪研究[J]. 太阳能学报, 2016, 37(3):743-751.
WANG L Q, BAO L B, SUN X F.Study of photovoltaic system maximum power point tracking based on mutation particle swarm optimization[J]. Acta energiae solaris sinica, 2016, 37(3): 743-751.
[13] 徐岩, 梁大为, 李春来, 等. 基于自然选择的改进粒子群优化算法[J]. 电气应用, 2016, 35(16): 34-37.
XU Y, LIANG D W, LI C L, et al.Improved particle swarm optimization algorithm based on natural selection[J]. Electric technology, 2016, 35(16): 34-37.
[14] WOLF P, BENDA V.Identification of PV solar calls and modules parameters by combining statistical and analytical methods[J]. Solar energy, 2013, 93(7):151-157.
[15] MORSY K A, ABOUELATTA M A, EL-BANNA M M, et al. Modeling and simulation of photovoltaic module for space applications using Simulink/MATLAB[C]//2018 First International Workshop on Deep and Representation Learning (IWDRL), Cairo, Egypt, 2018.
[16] LAL M, SINGH S N.A new method of determination of series and shunt resistances of silicon solar cells[J]. Solar energy materials & solar cells, 2007, 91(2): 137-142.
[17] SOTO W D, KLEIN S A, BECKMAN W A.Improvement and validation of a model for photovoltaic array performance[J]. Solar energy, 2006, 80(1): 78-88.
[18] TARABSHEH A A, GHAZAL M.Series connected photovoltaic cells modelling and analysis[J]. Sustainability, 2017, 9(3): 371.
[19] DING K, ZHANG J W, BIAN X G, et al.A simplified model for photovoltaic modules based on improved translation equations[J]. Solar energy, 2014, 101(1): 40-52.
[20] 黄杰. 多结层叠GaAs激光光伏电池研究[D]. 苏州: 中国科学院苏州纳米技术与纳米仿生研究所, 2018.
HUANG J.Investigation of multiple junction GaAs Laser Power Converter[D]. Suzhou: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, 2018.
[21] 张翔. 太阳能光伏发电多峰MPPT的研究[D]. 南昌: 南昌大学, 2014.
ZHANG X.A research on solar photovoltaic power generation multimodal MPPT[D]. Nanchang: Nanchang University, 2014.
[22] KENNEDY J.Particle swarm optimization[J]. Proceedings of ICNN'95-International Conference on Neural Networks, 2011, 4(8): 1942-1948.
[23] 温正, 孙华克. Matlab智能算法[M]. 北京: 清华大学出版社, 2017: 108-115.
WEN Z, SUN H K.Matlab intelligent algorithm[M]. Beijing: Tsinghua University Press, 2017: 108-115.
[24] 王瑞, 陈永刚. 基于捕食搜索策略的粒子群算法求解高铁闭塞分区划分问题[J]. 铁道标准设计, 2016, 60(1): 131-135.
WANG R, CHEN Y G.Particle swarm algorithm based on predatory search strategy for partitioning of high-speed railway block section[J]. Journal of computer applications, 2016, 60(1): 131-135.
[25] LINHARES A.State-space search strategies gleaned from animal behavior: a traveling salesman experiment[J]. Biological cybernetics, 1998, 78(3): 167.

基金

中国科学院战略性先导专项(临近空间科学实验系统XDA17020304)

PDF(2347 KB)

Accesses

Citation

Detail

段落导航
相关文章

/