基于改进粒子群算法的混合储能独立调频的容量优化研究

李聪, 秦立军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 426-434.

PDF(2596 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2596 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 426-434. DOI: 10.19912/j.0254-0096.tynxb.2021-0871

基于改进粒子群算法的混合储能独立调频的容量优化研究

  • 李聪, 秦立军
作者信息 +

SIZING OPTIMIZATION FOR HYBRID ENERGY STORAGE SYSTEM INDEPENDENTLY PARTICIPATING IN REGULATION MARKET USING IMPROVED PARTICLE SWARM OPTIMIZATION

  • Li Cong, Qin Lijun
Author information +
文章历史 +

摘要

新能源与可再生能源在“3060双碳”战略目标下深入构建清洁能源体系,针对储能以独立主体向电网提供调频辅助服务以应对间歇性和随机性功率波动的优化问题,提出飞轮和锂电池混合储能的容量配置策略。首先,以考虑调频里程的储能经济效益最大化建立数学模型;然后采用自适应噪声完备集合经验模态分解将调频指令分解为高频需求和低频需求;最后构建算例,在不同分频参数下嵌入混合储能的充放电功率控制和荷电状态约束,并运用反向搜索前期寻优和变异交叉策略后期寻优的改进粒子群算法求解。结果表明,该方法求解得到的配置方案有效提升了混合储能整体的经济性和安全性。

Abstract

Under the strategic goal of “3060 double carbon”, new energy and renewable energy are deeply building a clean energy system. Aiming at the optimization problem that energy storage provides frequency regulation auxiliary services to the power grid as an independent subject to deal with intermittent and random power fluctuations, the capacity allocation strategy of hybrid energy storage system(HESS) of flywheel and lithium battery is proposed. Firstly, the mathematical model is established to maximize the economic benefits of energy storage considering frequency regulation mileage. Then the command is decomposed into high frequency demand and low frequency demand by using complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN). Finally, embedded with the charge and discharge power control and state of charge(SOC) constraints of hybrid energy storage, an example is constructed under different frequency division parameters and solved by particle swarm optimization that is improved by opposite search strategy in the early stage and mutation and crossover strategy in the later stage. The results show that the configuration scheme obtained by this method effectively improves the overall economy and safety of hybrid energy storage.

关键词

混合储能系统 / 粒子群优化 / 调频服务 / 容量配置 / 飞轮

Key words

hybrid energy storage system / particle swarm optimization / frequency regulation service / capacity allocation / flywheel

引用本文

导出引用
李聪, 秦立军. 基于改进粒子群算法的混合储能独立调频的容量优化研究[J]. 太阳能学报. 2023, 44(1): 426-434 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0871
Li Cong, Qin Lijun. SIZING OPTIMIZATION FOR HYBRID ENERGY STORAGE SYSTEM INDEPENDENTLY PARTICIPATING IN REGULATION MARKET USING IMPROVED PARTICLE SWARM OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 426-434 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0871
中图分类号: TM711   

参考文献

[1] 国家能源局. 国家发展改革委国家能源局关于加快推动新型储能发展的指导意见. [2021-07-15]. http://zfxxgk.nea.gov.cn/2021-07/15/c_1310079331.htm
National Energy Administration.Guidelines of National Development and Reform Commission and National Energy Administration on accelerating the development of new energy storage technology. [2021-07-15]. http://zfxxgk.nea.gov.cn/2021-07/15/c_1310079331.htm
[2] 陈中飞, 荆朝霞, 陈达鹏, 等. 美国调频辅助服务市场的定价机制分析[J]. 电力系统自动化, 2018, 42(12): 1-10.
CHEN Z F, JING Z X, CHEN D P, et al.Analysis on pricing mechanism in frequency regulation ancillary services market of United States[J]. Automation of electric power systems, 2018, 42(12): 1-10.
[3] 黎淑娟, 李欣然, 黄际元, 等. 调频用储能电源的技术经济选型分析[J]. 太阳能学报, 2018, 39(12): 3550-3557.
LI S J, LI X R, HUANG J Y, et al.Technical and economic selection analysis of energy storage power supply for frequency regulation[J]. Acta energiae solaris sinica, 2018, 39(12): 3550-3557.
[4] JIN C L, LU N, LU S, et al.A coordinating algorithm for dispatching regulation services between slow and fast power regulating resources[J]. IEEE transactions on smart grid, 2014, 5(2): 1043-1050.
[5] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606.
SUI Y R, LIANG S Y, HUANG D C, et al.Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606.
[6] XIE X R, GUO Y H, DONG Y P, et al.Improving AGC performance of coal-fueled thermal generators using multi-MW scale BESS: a practical application[J]. IEEE transactions on smart grid, 2018, 9(3), 1769-1777.
[7] 李军徽, 侯涛, 严干贵, 等. 计及调频成本和荷电状态恢复的多储能系统调频功率双层优化[J]. 中国电机工程学报, 2021, 41(23): 8020-8033.
LI J H, HOU T, YAN G G, et al.Two-layer optimization of frequency modulation power in multi-battery energy storage system considering frequency modulation cost and recovery of state of charge[[J]. Proceedings of the CSEE, 2021, 41(23): 8020-8033.
[8] 付媛, 吴奇, 孙星, 等. 直流微电网中的虚拟储能与分区运行控制技术[J]. 太阳能学报, 2020, 41(5) : 319-328.
FU Y, WU Q, SUN X, et al.Virtual energy storage and partition operation control technology in DC microgrid[J]. Acta energiae solaris sinica, 2020, 41(5): 319-328.
[9] 贾燕冰, 郑晋, 陈浩, 等. 基于集合经验模态分解的火-储联合调度调频储能容量优化配置[J]. 电网技术, 2018, 42(9): 2930-2937.
JIA Y B, ZHENG J, CHEN H, et al.Capacity allocation optimization of energy storage in thermal-storage frequency regulation dispatch system based on EEMD[J]. Power system technology, 2018, 42(9): 2930-2937.
[10] 牛阳, 张峰, 张辉, 等. 提升火电机组AGC性能的混合储能优化控制与容量规划[J] . 电力系统自动化, 2016, 40(10): 38-45, 83.
NIU Y, ZHANG F, ZHANG H, et al.Optimal control strategy and capacity planning of hybrid energy storage system for improving AGC performance of thermal power units[J]. Automation of electric power systems, 2016, 40(10): 38-45, 83.
[11] 汤杰, 李欣然, 黄际元, 等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报, 2019, 34(5): 963-972.
TANG J, LI X R,HUANG J Y, et al.Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972.
[12] 李欣然, 周婷婷, 黄际元. 跟踪风电计划出力下的混合储能系统容量配置[J]. 太阳能学报, 2016, 37(9) :2194-2200.
LI X R, ZHOU T T, HUANG J Y.The hybrid energy storage system capacity configuration in tracking wind power project output[J]. Acta energiae solaris sinica, 2016, 37(9): 2194-2200.
[13] ZHANG F, HU Z C, MENG K, et al.HESS sizing methodology for an existing thermal generator for the promotion of AGC response ability[J]. IEEE transactions on sustainable energy, 2020, 11(2): 608-617.
[14] 朱永强, 王甜婧, 许阔, 等. 基于动态规划-遗传算法的混合储能系统实时协调调度和经济运行[J]. 太阳能学报, 2019, 40(4): 1059-1066.
ZHU Y Q, WANG T J, XU K, et al.Real-time coordinated dispatching and economic operation of hybrid energy storage system based on dynamic programming-genetic algorithm[J]. Acta energiae solaris sinica, 2019, 40(4): 1059-1066.
[15] 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术,2020, 46(2): 527-537.
GUO L J, WEI B, HAN X Q, et al.Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empirical mode decomposition[J]. High voltage engineering, 2020, 46(2): 527-537.
[16] 马兰, 谢丽蓉, 叶林, 等. 多目标多工况双储能协同运行策略[J]. 电力系统自动化, 2021, 45(20): 38-48.
MA L, XIE L R, YE L, et al.Cooperative operation strategy of dual energy storage under multiple objectives and multiple operation conditions[J]. Automation of electric power systems, 2021, 45(20): 38-48.
[17] 刘颖明, 王瑛玮, 王晓东, 等. 基于蚁狮算法的风电集群储能容量配置优化方法[J]. 太阳能学报, 2021, 42(1): 431-437.
LIU Y M, WANG Y W, WANG X D, et al.Optimization of storage capacity allocation in wind farm cluster based on ant lion optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(1): 431-437.
[18] 肖云鹏, 张兰, 张轩, 等. 包含独立储能的现货电能量与调频辅助服务市场出清协调机制[J]. 中国电机工程学报, 2020, 40(S1): 167-180.
XIAO Y P, ZHANG L, ZHANG X, et al.The coordinated market clearing mechanism for spot electric energy and regulating ancillary service incorporating independent energy storage resources[J]. Proceedings of the CSEE, 2020, 40(S1): 167-180.
[19] 陈达鹏, 荆朝霞. 美国调频辅助服务市场的调频补偿机制分析[J]. 电力系统自动化, 2017, 41(18) : 1-9.
CHEN D P, JING Z X.Analysis of frequency modulation compensation mechanism in frequency modulation ancillary services market of the United States[J]. Automation of electric power systems, 2017, 41(18): 1-9.
[20] 薛金花, 叶季蕾, 汪春, 等. 飞轮储能在区域电网中的调频应用及经济性分析[J]. 电网与清洁能源, 2013, 29(12): 113-118.
XUE J H, YE J L, WANG C, et al.Frequency regulation application and economic analysis of flywheel energy storage in a regional power grid[J]. Power system and clean energy, 2013, 29(12): 113-118.
[21] 梁静, 葛士磊, 瞿博阳, 等. 求解电力系统经济调度问题的改进粒子群优化算法[J]. 控制与决策, 2020, 35(8): 1813-1822.
LIANG J, GE S L, ZHAI B Y, et al.Improved particle swarm optimization algorithm for solving power system economic dispatch problem[J]. Control and decision, 2020, 35(8): 1813-1822.

基金

南网广东电网有限责任公司创新科技项目(0306002018030103SD00087)

PDF(2596 KB)

Accesses

Citation

Detail

段落导航
相关文章

/