以中国某抽水蓄能电站水泵水轮机模型机为研究对象,通过改进活动导叶头部圆半径r,基于Realizable k-ε 湍流模型,分析改进活动导叶头部圆半径r对水泵水轮机飞逸特性的影响,充分发挥水泵水轮机在抽水蓄能中的核心作用。结果表明:减小头部圆半径r至(r-0.313) mm,对机组“S”特性存在较佳的改善效果;飞逸工况下无叶区的高速水环逐渐减弱。流体由活动导叶进入转轮叶片流道的过程中,流体的速度由活动导叶出口附近逐渐增大,受高速水环的影响,在无叶区达到最大,随后速度逐渐减小进入转轮,保持在某个较大速度持续流动;飞逸工况下1~5流道转轮叶片进口端旋涡沿着流道逐渐扁平且向转轮叶片后移扩散。转轮叶片进口端旋涡附近压强变化整体呈下降趋势,在叶片进口端出现峰值,转轮叶片进口端旋涡附近压强大小随旋涡位移以及强度而变化;飞逸工况下尾水管的直锥管段分布着大量涡带,且涡带沿着弯肘段逐渐后移到扩散段。回流主要集中在尾水管扩散段边壁附近,在距离转轮中轴线300~500 mm处,回流逐渐减少。
Abstract
Based on the Realizable k-ε turbulence model, taking the pump-turbine of a domestic pumped storage power station as the research object, this paper improves the circular radius r of the guide vane head and analyzes the runaway characteristics of the pump-turbine with the improved circular radius of the guide vane head, giving full play to the core role of pump-turbine in pumped storage. The results show that reducing the head circular radius r to (r-0.313) mm has a better effect on the “S” characteristics of the pump-turbine. The high-speed water ring in the vaneless area is weakened obviously under the runaway condition. When the fluid enters the runner blade channel from the guide vane, the velocity of the fluid increases gradually near the outlet of the guide vane and reaches the maximum in the vaneless area due to the influence of the high-speed water ring. Then the velocity decreases gradually and enters the runner and keeps flowing at a high speed. In the runaway condition, the vortex at the inlet of the runner blade of the 1-5 runners is gradually flattened along the runner and spreads back to the runner blades. The pressure change near the vortex at the inlet of the runner blade has a overall downward trend and a peak appears at the inlet of the runner blade. The pressure near the vortex at the inlet of the runner blade varies with the displacement and strength of the vortex. A large number of vortexes are distributed in the straight conical section of the draft tube under the runaway condition, and the vortexes move gradually to the diffusion section along the elbow section. The backflow is mainly concentrated near the side wall of the diffusion section of the draft tube. When 300-500 mm away from the central axis of the runner, the backflow gradually decreases.
关键词
抽水蓄能 /
水泵水轮机 /
高速水环 /
活动导叶 /
飞逸特性
Key words
pumped storage /
pump-turbine /
high-speed water ring /
guide vane /
runaway characteristic
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于倩倩, 杨德权, 徐玲君, 等. 中小型抽水蓄能电站合理发展探讨[J]. 水力发电, 2021, 47(8) : 94-98.
YU Q Q, YANG D Q, XU L J, et al.Brief analysis on the reasonable development of small and medium-scale pumped-storage power stations[J]. Water power, 2021, 47(8) : 94-98.
[2] 梅祖彦. 抽水蓄能发电技术[M]. 北京: 机械工业出版社, 2000, 5-15.
MEI Z Y.Pumped storage power generation technology[M]. Beijing: Machinery Industry Press, 2000, 5-15.
[3] 罗成宗, 张飞. 大型抽水蓄能机组水力稳定性分析及其预控措施[J]. 水电站机电技术, 2018, 41(3): 1-15.
LUO C Z, ZHANG F.Hydraulic stability analysis and pre-control measures of large pumped storage units[J]. Mechanical and electrical technology of hydro power stations, 2018, 41(3): 1-15.
[4] 晏文杰, 杨桀彬, 张战午, 等. 尾水管空腔涡对抽水蓄能电站系统稳定性的影响[J]. 水力发电学报, 2021, 41(1): 1-10.
YAN W J, YANG J B, ZHANG Z W, et al.Influence of cavity vortex at draft tube on the system stability of pumped-storage power station[J]. Journal of hydroelectric engineering, 2021, 41(1): 1-10.
[5] 王青华, 曾辉, 张政, 等. 某抽水蓄能机组振动趋势预测研究[J]. 水电与抽水蓄能, 2021, 7(3): 41-47.
WANG Q H, ZENG H, ZHANG Z, et al.Research on vibration trend prediction of a pumped storage unit[J]. Hydropower and pumped storage, 2021, 7(3): 41-47.
[6] 杨建东, 曾威, 杨威嘉, 等. 水泵水轮机飞逸稳定性及其与反“S”特性曲线的关联[J]. 农业机械学报, 2015, 46(4): 59-64.
YANG J D, ZENG W, YANG W J, et al.Runaway stability of water pump turbine and its correlation with inverse S characteristic curve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 59-64.
[7] 李仁年, 刘殿兴, 董志强, 等. 水泵水轮机“S”形区全流道数值模拟[J]. 排灌机械工程学报, 2013, 31(5): 401-405.
LI R N, LIU D X, DONG Z Q, et al.Numerical simulation of the“S”shape full channel of pump turbine[J]. Journal of drainage and irrigation machinery engineering, 2013, 31(5): 401-405.
[8] FU X L, LI D Y, WANG H J, et al.Dynamic instability of a pump-turbine in load rejection transient process[J]. Science China technological sciences, 2018, 61(11): 1765-1775.
[9] LIU S L.Runaway transient simulation of a model kaplan turbine[J]. IOP conference series: earth and environmental science, 2010, 12(1): 1-9.
[10] 赵超本. 水泵水轮机飞逸工况稳定性研究[D]. 兰州: 兰州理工大学, 2019.
ZHAO C B.Research on stability of pump-turbine under the runaway condition[D]. Lanzhou: Lanzhou University of Technology, 2019.
[11] CHIRAG T, MICHEL J, CERVATES B, et al.Investigation of a high head-francis turbine at runaway operating conditions[J]. Energies, 2016, 9(3): 28-33.
[12] 李琪飞, 刘萌萌. 不同开度下水泵水轮机飞逸工况压力脉动特性分析[J]. 兰州理工大学学报, 2019, 45(3): 56-61.
LI Q F, LIU M M.Analysis of pressure fluctuation characteristics of pump-turbine with different openings under runaway condition[J]. Journal of Lanzhou University of Technology, 2019, 45(3): 56-61.
[13] MAO X L, CHEN D Y, WANG Y C, et al.Investigation on optimization of self-adaptive closure law for load rejection to a reversible pump turbine based on CFD[J]. Journal of cleaner production, 2021, 6(7): 281-283.
[14] 肖若富, 孙卉, 刘伟超, 等. 预开导叶下水泵水轮机“S”特性及其压力脉动分析[J]. 机械工程学报, 2012, 48(8): 174-179.
XIAO R F, SUN H, LIU W C, et al.Analysis of S-characteristics and its pressure pulsation of pump-turbine under pre-opening guide vanes[J]. Journal of mechanical engineering, 2012, 48(8): 174-179.
[15] 吴子娟, 梁武科, 董玮, 等. 活动导叶分布圆直径对混流式水轮机水力性能的影响[J]. 农业机械学报, 2019, 50(5): 140-147.
WU Z J, LIANG W K, DONG W, et al.Influence of guide vane distribution circle diameter on performance and internal flow characteristics of francis turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 140-147.
[16] 罗兴锜, 郭鹏程, 朱国俊, 等. 基于NSGA-Ⅱ算法的水轮机活动导叶多目标优化设计[J]. 排灌机械工程学报, 2010, 28(5): 369-373.
LUO X Q, GUO P C, ZHU G J, et al.Multi-object optimum design for hydraulic turbine guide vane based on NSGA-II algorithm[J]. Journal of drainage and irrigation machinery engineering, 2010, 28(5): 369-373.
[17] 孙科, 李岩, 王凯, 等. 串列竖轴水轮机尾流场影响CFD模拟分析[J]. 哈尔滨工业大学学报, 2018, 50(5): 185-191.
SUN K, LI Y, WANG K, et al.CFD simulation analysis of wake flow field in tandem vertical turbine[J]. Journal of Harbin University of Technology, 2018, 50(5): 185-191.