一种三相电流型Sepic逆变器

李宗阳, 沈虹, 王立乔, 李嘉欣, 宁小己

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 24-32.

PDF(3258 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3258 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 24-32. DOI: 10.19912/j.0254-0096.tynxb.2021-0874

一种三相电流型Sepic逆变器

  • 李宗阳1, 沈虹1, 王立乔1, 李嘉欣2, 宁小己1
作者信息 +

A THREE-PHASE CURRENT SOURCE SEPIC INVERTER

  • Li Zongyang1, Shen Hong1, Wang Liqiao1, Li Jiaxin2, Ning Xiaoji1
Author information +
文章历史 +

摘要

该文提出一种非隔离型三相电流型Sepic逆变器,该逆变器的结构主要通过传统的三相桥式电路以及可升降压模块的Sepic电路组合而成。借助SPWM载波幅值可调策略解决对于电流型逆变器直流侧电感较大的问题,同时优化输出波形质量。首先介绍此三相电流型Sepic逆变器的工作原理以及相应的调制方式,并在此基础上给出此电路的电压增益数学公式推导,进行相应的数学建模,并由此确定了闭环控制策略。通过仿真验证此电路的升降压能力,最后通过TMS320F2812与FPGA搭建数字控制平台进行实验验证,验证此电路的可行性。

Abstract

This paper proposes a novel three-phase current source SEPIC inverter, which is composed of traditional three-phase bridge circuit and SEPIC circuit. The inverter can achieve buck-boost comply with the characteristics of SEPIC circuit. Meanwhile, by means of the SPWM carrier amplitude adjustable strategy, the problem which traditional current source inverter has large inductance parameter in DC side is solved, and the output waveform quality is optimized. This paper first introduces the working mode and the corresponding modulation method of the inverter, afterwards gives the mathematical formula of the voltage gain. Moreover, based on the characteristics of the circuit, the corresponding mathematical model and the closed-loop control strategy is established. Finally, the corresponding digital control platform is built by TMS320F2812 and FPGA, and the corresponding experimental verification is carried out, which verifies the feasibility of the circuit.

关键词

电流型逆变器 / Sepic / 可升降压 / 载波幅值可调

Key words

current source inverter / Sepic / Buck-Boost / carrier amplitude adjustable

引用本文

导出引用
李宗阳, 沈虹, 王立乔, 李嘉欣, 宁小己. 一种三相电流型Sepic逆变器[J]. 太阳能学报. 2023, 44(1): 24-32 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0874
Li Zongyang, Shen Hong, Wang Liqiao, Li Jiaxin, Ning Xiaoji. A THREE-PHASE CURRENT SOURCE SEPIC INVERTER[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 24-32 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0874
中图分类号: TK513.5   

参考文献

[1] KOURO S, LEON J I, VINNIKOV D, et al.Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology[J]. IEEE industrial electronics magazine, 2015, 9(1): 47-61.
[2] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[3] 曾正, 邵伟华, 胡博容, 等. SiC 器件在光伏逆变器中的应用与挑战[J]. 中国电机工程学报, 2017, 37(1): 221-232.
ZENG Z, SHAO W H, HU B R, et al.Application and challenge of SiC devices in photovoltaic inverters[J]. Proceedings of the CSEE, 2017, 37(1): 221-232.
[4] 王立乔, 韩啸, 石珊珊. 一种单级三相Cuk三电平逆变器研究[J]. 中国电机工程学报, 2020, 40(13): 4290-4301.
WANG L Q, HAN X, SHI S S.Research on a single-stage three-phase Cuk three-level inverter[J]. Proceedings of the CSEE, 2020, 40(13): 4290-4301.
[5] WEI L B, ZHANG Z M, LI J Z.A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation[J]. IEEE transactions on energy conversion, 2007, 22(4):881-886.
[6] GUACCI M, ZHANGD F, TATIC M, et al.Three-phase two-third-PWM buck-boost current source inverter system employing dual-gate monolithic bidirectional GaN e-FETs[J]. IEEE transactions on power electronics and applications, 2019, 4(4): 339-354.
[7] HO A, CHUN T.Single-phase modified quasi-Z-source cascaded hybrid five-level inverter[J]. IEEE transactions on industrial electronics, 2018, 65(6): 5125-5134.
[8] SAHAN B, ARAUJO S V, NODING C.Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems[J]. IEEE transactions on power electronics, 2010, 26(8): 2304-2318.
[9] DARWISH A, MASSOUD A M, HOLLIDAY D, et al.Single-stage three-phase differential-mode buck-boost inverters with continuous input current for PV applications[J]. IEEE transactions on power electronics, 2016, 31(12): 8218-8236.
[10] MELIN P E, ROHTENJ A, ESPINOZAJ R, et al.Analysis and design of a multicell topology based on three-phase/single-phase current-source cells[J]. IEEE transactions on power electronics, 2016, 31(9): 6122-6133.
[11] ANAND S, GUNDLAPALLI S K, FERNANDES B G.Transformer-less grid feeding current source inverter for solar photovoltaic system[J]. IEEE transactions on industrial electronics, 2014, 61(10): 5334-5344.
[12] FANG Z P.Z-source inverter[J]. IEEE transactions on industry applications, 2003, 39(2): 504-510.
[13] LIU Y S, ABU-RUB H, GE B M.Z-Source/quasi-Z-source inverters: derived networks, modulations, controls, and emerging applications to photovoltaic conversion[J]. IEEE industrial electronics magazine, 2014, 8(4): 32-44.
[14] TANG Y, XIE S J, ZHANG C H, et al.Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability[J]. IEEE transactions on power electronics, 2009, 24(2): 409-415.
[15] RAVEENDHRA D, PATHAK M K.Three-phase capacitor clamped boost inverter[J]. IEEE journal of emerging and selected topics in power electronics, 2019, 7(3): 1999-2011.
[16] DIAB M S, ELSEROUGI A, MASSOUD A M, et al.A Four-switch three-phase SEPIC-based inverter[J]. IEEE transactions on power electronics, 2015, 30(9): 4891-4905.
[17] DIAB M S, ELSEROU A, ABDEL-KHALIK A S, et al. A Zeta-converter based four-switch three-phase DC-AC inverter[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE),Montreal, Canada, 2015: 4671-4677.
[18] 王立乔, 刁亚飞. 基于有源X型电感网络的多电平逆变器研究[J]. 太阳能学报, 2017, 38(2): 347-356.
WANG L Q, DIAO Y F.Research on multilevel inverter based on active X-type inductive network[J]. Acta solaris energiae sinica, 2017, 38(2): 347-356.
[19] SHAWKY A, TAKESHITA T, SAYE M A.Single-stage three-phase grid-tied isolated sepic-based differential inverter with improved control and selective harmonic compensation[J]. IEEE access, 2020, 8: 147407-147421.
[20] RAHMAN M D, KABIR M S, RABBI M N, et al.Design of a flexible three-phase inverter using cascaded boost SEPIC (CBS) converter for renewable energy application[C]//2020 2nd International Conference on Innovative Mechanisms for Industry Applications, Bangalore, India, 2020: 652-657.
[21] 王立乔, 秦栎雯, 朱文通. 一种无电解电容三相Zeta整流器[J]. 中国电机工程学报, 2019, 39(11): 3353-3355.
WANG L Q, QIN L W, ZHU W T.A three-phase zeta rectifier without electrolytic capacitor[J]. Proceedings of the CSEE, 2019, 39(11): 3353-3355.
[22] 王立乔, 杨博生, 邬伟扬. 载波幅值可调PWM技术及其在级联型多电平变流器中的应用[J]. 电工技术学报, 2010, 25(11): 122-128.
WANG L Q, YANG B S, WU W Y.PWM technology with adjustable carrier amplitude and its application in cascade multilevel converter[J]. Transactions of China Electrotechnical Society, 2010, 25(11): 122-128.
[23] 徐德鸿. 电力电子系统建模及控制[M]. 北京: 机械工业出版社, 2006: 40-43.
XU D H.Modeling and control for power electronics system[M]. Beijing: China Machine Press, 2006: 40-43.

基金

国家自然科学基金(51677162); 河北省自然科学基金(E2017203235)

PDF(3258 KB)

Accesses

Citation

Detail

段落导航
相关文章

/