针对风力机运行及基础环式基础风致疲劳损伤特点,提出“上下联动,动静结合”的在线监测和损伤评估方案,即基于基础环水平度测量结果确定线性差分式位移传感器(LVDT)位移计安装位置,并将实时采集的位移信号接入风力机数据采集与监控(SCADA)系统,可实现与上部机组参数同步采集、分析与损伤评估。现场监测结果表明,风力机在启停机、偏航、高中低速运行平稳段等常见工况下轮毂转速与基础环水平度的相关系数均为0.8及以上,为极强相关,故可将轮毂转速视为基础所受的“等效荷载”;通过绘制启机工况下的轮毂转速n-基础环位移Δ曲线,确定临界轮毂转速下限nd和上限nu以及斜率k等曲线参数,可评估风力机基础疲劳损伤程度;通过绘制机头方位角θ-基础环最大水平度Δmax曲线,可确定下法兰周边混凝土磨损性空腔分布区域及大小,为后期基础注浆提供明确的加固位置。
Abstract
According to the characteristics of wind turbine operation and the wind-induced fatigue damage of the embedded ring foundation, an online monitoring and damage assessment scheme of "upper and lower linkage, dynamic and static combination" is proposed. In other words, the installation position of the LVDT displacement sensor is determined based on the measurement results of the embedded ring levelness, and the displacement signals collected in real time are connected to the SCADA system of the wind turbine, which can realize synchronous acquisition, analysis and damage assessment with upper unit parameters. The field monitoring results show that the correlation coefficient between hub speed and embedded ring levelness is 0.8 or above under common working conditions such as start and stop, yaw, stable operation at high, medium and low speeds, which is extremely correlated. Therefore, it is feasible to regard the hubspeed as the "equivalent load on the foundation of the wind turbine. The fatigue damage degree of wind turbine foundation can be evaluated by drawing the curve of hub speed N-foundation ring displacement Δ and determining the curve parameters of critical hub speed, such as lower limit nd and upper limit nu and slope. By drawing the curveof the azimuth angle of wind turbine headθand the maximum level of the embedded ring Δmax, the distribution area and size of the concrete wear cavity around the lower flange can be determined, which provides a clear reinforcement position for the later foundation grouting.
关键词
基础环 /
风力机基础 /
监测 /
轮毂转速 /
水平度
Key words
embedded ring /
wind turbine foundation /
monitoring /
hub speed /
levelness
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CURRIE M, QUAIL F.Development of a robust structural health monitoring system for wind turbine foundations[C]//ASME Turbo Expo 2012: Turbine Technical Conference & Exposition, New York, USA, 2012: 859-867.
[2] 马人乐, 黄冬平. 风电结构亚健康状态研究[J]. 特种结构, 2014, 31(4): 1-4.
MA R L, HUANG D P.Study on the sub-health of wind power structure[J]. Special structures, 2014, 31(4): 1-4.
[3] 康明虎, 徐慧, 黄鑫. 基础环形式风力机基础局部损伤分析[J]. 太阳能学报, 2014, 35(4): 583-588.
KANG M H, XU H, HUANG X.Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta energiae solaris sinica, 2014, 35(4): 583-588.
[4] 吕伟荣, 何潇锟, 卢倍嵘, 等. 基础环式风力机基础疲劳损伤机理研究[J]. 建筑结构学报, 2018, 39(9): 140-148.
LYU W R, HE X K, LU B R, et al.Research on fatigue damage mechanism of wind turbine foundation of foundation pipe[J]. Journal of building structures, 2018, 39(9): 140-148.
[5] 吕伟荣, 刘锡军, 张家志, 等. 风机基础风致疲劳损伤机理、检测、设计与加固[M]. 北京: 中国建筑工业出版社, 2017.
LYU W R, LIU X J, ZHANG J Z, et al.Mechanism, detection, design and reinforcement of wind-induced fatigue damages in wind turbine foundation[M]. Beijing: China Architecture Publishinag & Media Co., Ltd, 2017.
[6] 蒋理论, 方占正, 吕伟荣. 坝上地区风电机组基础问题研究及防治措施探讨[J]. 河北电力技术, 2019, 38(3): 70-74.
JIANG L L, FANG Z Z, LYU W R.Study on problems and prevention measures of wind turbine foundation in Bashang area[J]. Hebei electric power, 2019, 38(3): 70-74.
[7] CURRIE M, SAAFI M, TACHTATZIS C, et al.Structural integrity monitoring of onshore wind turbine concrete foundations[J]. Renewable energy, 2015, 83: 1131-1138.
[8] MCALORUM J, PERRY M, FUSIEK G, et al.Deterioration of cracks in onshore wind turbine foundations[J]. Engineering structures, 2018, 167: 121-131.
[9] 白雪, 何敏娟, 马人乐, 等. 风力发电塔预埋塔筒基础健康监测. 太阳能学报, 2017, 38(7): 1979-1986.
BAI X, HE M J, MA R L, et al.Structural health monitoring of an onshore wind turbine foundation with inserted ring[J]. Acta energiae solaris einica, 2017, 38(7): 1979-1986.
[10] GB50231—2009, 机械设备安装工程施工及验收通用规范[S]. 北京: 中国计划出版社, 2009.
GB50231—2009, General code for construction and acceptance of mechanical equipment installation engineering[S]. Beijing: China Planning Press, 2009.
[11] GB/T20319—2017, 风力发电机组验收规范[S]. 2017.
GB/T20319—2017, Wind turbine generator systems-specification for acceptance[S]. 2017.
[12] GB50135—2019, 高耸结构设计标准[S], 2019.
GB50135—2019, Standard for design of high-rising structures[S]. 2019.
[13] 何春雄, 龙卫江, 朱锋峰. 概率论与数理统计[M]. 北京: 高等教育出版社, 2012.
HE C X, LONG W J, ZHU F F.Probability theory and mathematical statistics[M]. Beijing: Higher Education Press, 2012.
基金
国家自然科学基金面上项目(51578235); 湖南省自科基金面上项目(2021JJ30261)