提出通过掺杂的方法,调控复合金属氧化物的热化学反应温度,试验结果表明钴铜锂三元复合氧化物的还原起始反应温度可从850 ℃降低到795 ℃,氧化反应起始温度也可降低35~50 ℃。XRD和反应动力学分析表明,复合相CoLiO2的出现使还原反应活化能均值从911 kJ/mol降低到602 kJ/mol,这是反应温度降低的主要原因。经过105个循环后,钴铜锂三元复合氧化物的氧化还原反应循环的比例仍保持在80%以上。
Abstract
A composite metal oxide system has been proposed to regulate the thermochemical temperature by doping. The results showed the reduction temperature of cobalt-copper-lithium ternary composite oxide decreased from 850 ℃ to 795 ℃. The oxidation temperature was also reduced by 35-50 ℃. XRD and reaction kinetic analysis showed that the composite phase CoLiO2 reduced the average activation energy of the reduction reaction from 911 kJ/mol to 602 kJ/mol, which was the main reason for the decrease of the reaction temperature. After 105 cycles, the redox reaction ratio of the cobalt-copper-lithium ternary composite oxide remained above 80%.
关键词
热化学 /
储热 /
反应动力学 /
金属氧化物 /
温度调控
Key words
thermochemistry /
thermal energy storage /
reaction kinetics /
metal oxide /
temperature regulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DAI L, LONG X F, LOU B, et al.Progress in thermochemical energy storage for concentrated solar power: a review[J]. International journal of energy research, 2018, 42: 4546-4561.
[2] PELAY U, LUO L, FAN Y, et al.Thermal energy storage systems for concentrated solar power plants[J]. Renewable & sustainable energy reviews, 2017, 79: 82-100.
[3] CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chemical reviews, 2019, 119: 4777-4816.
[4] DIZAJI H B, HOSSEINI H.A review of material screening in pure and mixed-metal oxide thermochemical energy storage(TCES) systems for concentrated solar power (CSP) applications[J]. Renewable and sustainable energy reviews, 2018, 98(12): 9-26.
[5] BULFIN B, VIETEN J, AGRAFIOTIS C, et al.Applications and limitations of two step metal oxide thermochemical redox cycles: a review[J]. Journal of materials chemistry A, 2017, 5: 18951-18966.
[6] CARRILLO A J, SERRANO D P, PIZARRO P, et al.Understanding redox kinetics of iron-doped manganese oxides for high temperature thermochemical energy storage[J]. Journal of physical chemistry C, 2016, 120: 27800-27812.
[7] HAMIDI M, BAYON A, WHEELER V M, et al.Reduction kinetics for large spherical 2∶1 iron-manganese oxide redox materials for thermochemical energy storage[J]. Chemical engineering science, 2019, 201: 74-81.
[8] ALONSO E, PEREZ-RABAGO C, LICURGO J, et al.First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage[J]. Solar energy, 2015, 115: 297-305.
[9] MUELLER D, KNOLL C, ARTNER W, et al.Combining in-situ X-ray diffraction with thermogravimetry and differential scanning calorimetry-an investigation of CO3O4, MnO2 and PbO2 for thermochemical energy storage[J]. Solar energy, 2017, 153: 11-24.
[10] ANDRÉ L, ABANADES S, CASSAYRE L.Mixed metal oxide systems applied to thermochemical storage of solar energy: Benefits of secondary metal addition in Co and Mn oxides and contribution of thermodynamics[J]. Applied sciences, 2018, 8: 2618.
[11] BLOCK T, SCHMUECKER M.Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems[J]. Solar energy, 2016, 126: 195-207.
[12] ZAKI A, CARRASCO J, BIELSA D, et al.Tunable redox temperature of a Co3-xMnxO4(0≤x≤3) continuous solid solution for thermochemical energy storage[J]. ACS applied materials & interfaces, 2020, 12: 7010-7020.
[13] 杨光伟, 杨天锋, 肖刚, 等. Co3O4/CoO氧化还原体系的反应动力学研究[J]. 太阳能学报, 2020, 41(1): 302-310.
YANG G W, YANG T F, XIAO G, et al.Kinetics analysis on thermal characteristics of Co3O4/CoO redox system[J]. Acta energiae solaris sinica, 2020, 41(1): 302-310.
基金
浙江省杰出青年基金(LR20E060001); 中央高校基本科研业务费专项资金(2022ZFJH004); 国家自然科学基金创新研究群体项目(51621005)