基于两阶段不确定性量化的光伏发电超短期功率预测

张家安, 郝峰, 董存, 刘辉, 李志军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 69-77.

PDF(1824 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1824 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 69-77. DOI: 10.19912/j.0254-0096.tynxb.2021-0887

基于两阶段不确定性量化的光伏发电超短期功率预测

  • 张家安1, 郝峰2, 董存3, 刘辉4, 李志军1
作者信息 +

ULTRA-SHORT-TERM POWER FORECASTING OF PHOTOVOLTAIC POWER GENERATION BASED ON TWO-STAGE UNCERTAINTY QUANTIZATION

  • Zhang Jiaan1, Hao Feng2, Dong Cun3, Liu Hui4, Li Zhijun1
Author information +
文章历史 +

摘要

针对光伏功率预测,提出一种光伏发电出力不确定性量化分析的两阶段模型。第1阶段,首先选取待预测日之前一段时间的光伏输出功率历史数据作为训练样本,引入模糊熵(FE)将不同天气类型量化并作为输入量;然后利用集成经验模态分解(EEMD)将光伏发电功率时间序列分解为多个模态分量,再利用Hurst指数分析将不同模态分量重构为中尺度和宏尺度2个子序列,基于双向长短期记忆神经网络并引入注意力机制对重构后的2个子序列分别进行预测;最后对中尺度子序列对应的误差序列进行修正,得到光伏发电出力的点预测结果。第2阶段,根据第1阶段点预测结果得到的误差统计,采用核密度估计(KDE)方法预测光伏发电出力的区间,分别获取在95%、90%、85%及80%置信水平下的区间覆盖率(PICP)。应用中国西北地区某光伏电站运行数据作为算例,验证了该文预测方法的有效性。

Abstract

A two-stage model for quantitative analysis of output uncertainty of photovoltaic power generation is proposed. In the first stage, the photovoltaic power for a period of time before the prediction day is used as the training sample, and the fuzzy entropy is introduced to quantify different weather types as the input. Then, based on the employing integrated empirical mode decomposition (EEMD), the photovoltaic power time series is decomposed into multiple modal components, which are reconstructed into mesoscale and macro scale subsequences with Hurst index analysis. The BiLSTM based on attention mechanism (BiLSTM-Attention) is used to predict the two subsequences respectively. The error sequence corresponding to the mesoscale subsequence is corrected to obtain the point prediction results of photovoltaic power generation. In the second stage, the nuclear density estimation (KDE) method is used to predict the interval of photovoltaic power generation according to the error statistics obtained from the point prediction results in the first stage. The prediction interval coverage probability (PICP) at 95%, 90%, 85% and 80% confidence levels are obtained respectively. Taking the operation data of a photovoltaic power station in Northwest China as an example, the effectiveness of this method is verified.

关键词

光伏发电 / 预测 / 神经网络 / 注意力机制 / 集成经验模态分解 / 误差校正

Key words

PV power generation / forecasting / neural networks / attention mechanism / EEMD / error correction

引用本文

导出引用
张家安, 郝峰, 董存, 刘辉, 李志军. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报. 2023, 44(1): 69-77 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0887
Zhang Jiaan, Hao Feng, Dong Cun, Liu Hui, Li Zhijun. ULTRA-SHORT-TERM POWER FORECASTING OF PHOTOVOLTAIC POWER GENERATION BASED ON TWO-STAGE UNCERTAINTY QUANTIZATION[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 69-77 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0887
中图分类号: TM615   

参考文献

[1] PILLOT B, MUSELLI M, POGGI P, et al.Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: the case of solar PV[J]. Energy policy, 2019, 127: 113-124.
[2] OSPINA J, NEWAZ A, FARUQUE M O.Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model[J]. IET renewable power generation, 2019, 13(7): 1087-1095.
[3] 薛琳, 黄南天, 赵树野, 等. 基于条件互信息的低冗余短期负荷预测特征选择[J]. 东北电力大学学报, 2019, 39(2): 30-38.
XUE L, HUANG N T, ZHAO S Y, et al.Low redundancy feature selection using conditional mutual information for short-termload forecasting[J]. Journal of Northeast Dianli University, 2019, 39(2): 30-38.
[4] 崔杨, 张汇泉, 仲悟之, 等. 考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J]. 高电压技术, 2020, 46(5): 1486-1496.
CUI Y, ZHANG H Q, ZHONG W Z, et al.Multi-source optimal scheduling of renewable energy high-permeability power system with CSP plants considering demand response[J]. High voltage engineering, 2020, 46(5): 1486-1496.
[5] 崔杨, 杨志文, 张节潭, 等. 计及综合成本的风电-光伏-光热联合出力调度策略[J]. 高电压技术, 2019, 45(1):269-275.
CUI Y, YANG Z W, ZHANG J T, et al.Scheduling strategy of wind power-photovoltaic power-concentrating solar power considering comprehensive costs[J]. High voltage engineering, 2019, 45(1): 269-275.
[6] FENG Y, HAO W P, LI H R, et al.Machine learning models to quantify and map daily global solar radiation and photovoltaic power[J]. Renewable and sustainable energy reviews, 2020, 118: 109393.
[7] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[8] 赵亮, 刘友波, 余莉娜, 等. 基于深度信念网络的光伏电站短期发电量预测[J]. 电力系统保护与控制, 2019, 47(18): 11-19.
ZHAO L, LIU Y B, YU L N, et al.Short-term power generation forecast of PV power station based on deep belief network[J]. Power system protection and control, 2019, 47(18): 11-19.
[9] 王继拓, 王万成, 陈宏伟. 基于回归——马尔科夫链的光伏发电功率预测[J]. 电测与仪表, 2019, 56(1): 76-81.
WANG J T, WANG W C, CHEN H W.Photovoltaic power generation forecasting based on regression—Markov chain[J]. Electrical measurement & instrumentation, 2019, 56(1): 76-81.
[10] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与 XGBoost 组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2): 614-620.
CHEN Z Y, LIU J B, LI C, et al.Ultra short term load forecasting based on LSTM and xgboost combination model[J]. Power grid technology, 2020, 44(2): 614-620.
[11] 周恒俊, 王璇, 王志远, 等. 基于MIPCA与GRU网络的光伏出力短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(9): 55-62.
ZHOU H J, WANG X, WANG Z Y, et al.Short term forecasting method of photovoltaic output based on MIPCA and GRU network[J]. Journal of power system and automation, 2020, 32(9): 55-62.
[12] 谢小瑜, 周俊煌, 张勇军. 深度学习在泛在电力物联网中的应用与挑战[J]. 电力自动化备, 2020, 40(4): 77-87.
XIE X Y, ZHOU J H, ZHANG Y J.Application and challenge of deep learning in Ubiquitous Power Internet of Things[J]. Electric power automation equipment, 2020, 40(4): 77-87.
[13] 栗然, 孙帆, 丁星, 等. 考虑多能时空耦合的用户级综合能源系统超短期负荷预测方法[J]. 电网技术, 2020, 44(11): 4121-4134.
LI R, SUN F, DING X, et al.Ultra short-term load forecasting method for user-level integrated energy system considering spatio-temporal coupling of multienergy[J]. Power system technology, 2020, 44(11): 4121-4134.
[14] 刘杰, 陈雪梅, 陆超, 等. 基于数据统计特性考虑误差修正的两阶段光伏功率预测[J]. 电网技术, 2020, 44(8): 2891-2897.
LIU J, CHEN X M, LU C, et al.Two-stage photovoltaic power forecasting and error correction method based on statistical characteristics of data[J]. Power system technology, 2020, 44(8): 2891-2897.
[15] WANG J X, ZHONG H W, LAI X W, et al.Exploring key weather factors from analytical modeling toward improved solar power forecasting[J]. IEEE transactions on smart grid, 2019, 10(2): 1417-1427.
[16] SEN W, YONG H S, YAN Z, et al.A new hybrid short-term interval forecasting of PV output power based on EEMD-SE-RVM[J]. Energies, 2019, 13(1): 87.
[17] 陈煌杰. 经验模态分解类算法在经济分析中的选择及应用[J]. 西部金融, 2020(1): 14-23.
CHEN H J.The selection and application of empirical modal decomposition algorithm in economic analysis[J]. West China finance, 2020(1): 14-23.
[18] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[19] 沈豫, 项康利, 黄夏楠, 等. 基于XGBoost 算法的短期负荷预测研究[J]. 水利水电技术, 2019, 50(S1): 256-261.
SHEN Y, XIANG K L, HUANG X N, et al.Research on short-term load forecasting based on XGBoost algorithm[J]. Water resources and hydropower engineering, 2019, 50(S1): 256-261.
[20] 赵亮, 刘友波, 余莉娜, 等. 基于深度信念网络的光伏电站短期发电量预测[J]. 电力系统保护与控制, 2019, 47(18): 11-19.
ZHAO L, LIU Y B, YU L N, et al.Short-term power generation forecast of PV power station based on deep belief network[J]. Power system protection and control, 2019, 47(18): 11-19.
[21] MA Z Y, LI H L, SUN Q, et al.Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems[J]. Energy and buildings, 2014, 85: 464-472.
[22] SÁNCHEZ-GARCÍA J L, ESPINOSA-JUÁREZ E, FLORES J J. Short term photovoltaic power production using a hybrid of nearest neighbor and artificial neural networks[C]//Transmission & Distribution Conference & Exposition-Latin America, Morelia, Mexico, 2016.
[23] 杨茂, 张强. 风电功率超短期预测误差的非参数估计分布研究[J]. 东北电力大学学报, 2018, 38(1): 15-20.
YANG M, ZHANG Q.The research of ultra-short-term wind power prediction error distribution based on nonparametric estimation[J]. Journal of Northeast Dianli University, 2018, 38(1): 15-20.
[24] 肖斐, 艾芊. 考虑天气因素的区域配网扰动事件预估[J]. 电网技术, 2018, 42(4): 1132-1139.
XIAO F, AI Q.Estimation of regional distribution network disturbance events considering weather factors[J]. Power system technology, 2018, 42(4): 1132-1139.
[25] 梁正堂. 基于不确定性特征挖掘的风电系统预测与决策理论研究[D]. 济南: 山东大学, 2017.
LIANG Z T.Research on prediction and decision theory of wind power system based on uncertainty feature mining[D]. Ji’nan: Shandong University, 2017.
[26] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.

基金

河北省自然科学基金创新群体项目(E2020202142)

PDF(1824 KB)

Accesses

Citation

Detail

段落导航
相关文章

/