基于塑性损伤模型的某低强风电机组基础加固方案优化设计

孙林远, 黄昊, 甄理, 夏世法

太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 453-460.

PDF(3886 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3886 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (4) : 453-460. DOI: 10.19912/j.0254-0096.tynxb.2021-0906
电化学储能安全性与退役动力电池梯次利用关键技术专题

基于塑性损伤模型的某低强风电机组基础加固方案优化设计

  • 孙林远, 黄昊, 甄理, 夏世法
作者信息 +

OPTIMIZATION DESIGN OF FOUNDATION REINFORCEMENT SCHEME FOR LOW STRENGTH WIND TURBINE BASED ON PLASTIC DAMAGE MODEL

  • Sun Linyuan, Huang Hao, Zhen Li, Xia Shifa
Author information +
文章历史 +

摘要

针对风电机组基础加固缺少精确理论分析的问题,以某风场项目为例,通过ABAQUS三维有限元分析软件,采用塑性损伤模型模拟不同方案的加固效果,以期为实际风电机组基础加固设计提供理论支撑。通过对比分析不同尺寸环梁加固后基础的最大应力、损伤程度以及钢筋应力的变化,结果表明:增加环梁高度能有效提高基础结构承载力,增加环梁宽度能在一定程度上提高基础结构承载力,当环梁高度为1.2 m,宽度为0.6 m时加固效果最优,并在实际工程中得到验证。建议加固设计时采用有限元方法对不同加固方案进行模拟,比较加固效果,确定最优加固方案。

Abstract

In this paper, one of the foundations of wind turbine in a wind farm is taken as an example. Through ABAQUS three-dimensional finite element analysis software, the plastic damage model is used to simulate the reinforcement effect of different schemes, which provides theoretical support for the foundation reinforcement design of actual wind turbine. By comparing and analyzing the changes of maximum stress, damage degree and reinforcement stress of foundation after reinforcement of ring beam with different sizes, it is found that increasing the height of ring beam can effectively improve the bearing capacity of foundation structure, and increasing the width of ring beam can improve the bearing capacity of foundation structure to a certain extent. When the height of ring beam is 1.2 m and the width is 0.6 m, the reinforcement effect is the best which is verified in practical engineering. It is suggested that the finite element method should be used to simulate different reinforcement schemes, compare the reinforcement effects and determine the optimal reinforcement scheme.

关键词

风电机组 / ABAQUS / 加固 / 损伤程度 / 环梁

Key words

wind turbines / ABAQUS / reinforcement / damage degree / ring beam

引用本文

导出引用
孙林远, 黄昊, 甄理, 夏世法. 基于塑性损伤模型的某低强风电机组基础加固方案优化设计[J]. 太阳能学报. 2022, 43(4): 453-460 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0906
Sun Linyuan, Huang Hao, Zhen Li, Xia Shifa. OPTIMIZATION DESIGN OF FOUNDATION REINFORCEMENT SCHEME FOR LOW STRENGTH WIND TURBINE BASED ON PLASTIC DAMAGE MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(4): 453-460 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0906
中图分类号: TV213.4   

参考文献

[1] GB 50010—2010, 混凝土结构设计规范[S].
GB 50010—2010, Code for design of concrele structure[S].
[2] PHAM H V, DIAS D, MIRANDA T, et al. 3D numerical modeling of foundation solutions for wind turbines[J]. International journal of geomechanics, 2018, 18(12):04018164.
[3] 赵妍, 黄昊, 刘致彬.风机基础体外预应力加固方案研究[C]//第七届全国特种混凝土技术交流会暨中国土木工程学会混凝土质量专业委员会2016年年会, 2016.
ZHAO Y, HUANG H, LIU Z B.Research on external prestressed reinforcement scheme of wind turbine foundation[C]//The Seventh National Exchange of Special Concrete Technology and 2016 Annual Meeting of Concrete Quality Committee of China Society of Civil Engineering, 2016.
[4] 汪宏伟.采用环梁加固风机基础的有限元分析[J]. 可再生能源, 2016, 34(4): 558-562.
WANG H W.Finite element analysis of the wind turbine foundation reinforced with ring beam[J]. Renewable energy, 2016, 34(4): 558-562.
[5] 康明虎, 徐慧, 黄鑫.基础环形式风机基础局部损伤分析[J]. 太阳能学报, 2014, 35(4): 583-588.
KANG M H, XU H, HUANG X.Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta energiae solaris sinica, 2014, 35(4): 583-588.
[6] 康明虎.某风电场风机基础故障分析及处理[J]. 可再生能源, 2014, 32(6): 809-813.
KANG M H.Analysis and treatment of wind turbine foundation fault in a wind farm[J]. Renewable energy, 2014, 32(6): 809-813.
[7] CECS 03:2007, 钻芯法检测混凝土强度技术规程[S].
CECS 03:2007, Technical specification for testing concrete strength with drilled core method[S].

基金

中国水科院基本科研业务费项目(SS0145B042043)

PDF(3886 KB)

Accesses

Citation

Detail

段落导航
相关文章

/