针对高比例光伏发电系统网侧变弱潜在的高频谐振问题,提出一种基于输出电流直接前馈的新型阻尼控制方案,并对环路谐振抑制参数整定的全局-局部运行双重约束进行研究。首先,建立光伏多机并网系统数学模型,利用阻抗比判断潜在的高频谐振。其次,对逆变器串电阻环路变换构建等效的输出电流直接前馈控制环路,通过分析不同谐振抑制参数下系统全局高频谐振治理效果及单台逆变器局部运行状态,以全局-局部稳定为双重约束确定了谐振抑制参数可行域,并分析电气参数随运行状态变化下所提方案的抗扰能力。最后,搭建光伏多机并网系统的仿真实验平台验证上述研究的有效性。
Abstract
A novel current direct feed-forward damping control strategy and the optimization on damping parameter based on dual limitations are proposed to suppress the high frequency resonance of the grid-connected system with multiple PV inverters under weak grid. Firstly, based on impedance criterion, the mathematical model of the grid-connected system with multiple PV inverters is built to predict the potential high frequency resonance. Then, the control loop of the current direct feed-forward damping with equivalent physical connection is obtained by forward moving of the inverter series with resistance. By analyzing the global harmonic suppression effect of the system and the self-stability of the inverter with different damping parameters, the value of the damping parameter is evaluated based on dual limitations of global stability and self-stability. Moreover, the control ability of proposed method with different electrical parameters under various operating status is analyzed. Finally, simulations and experiments of the grid-connected system with multiple PV inverters are built to verify the effectiveness of the front analysis.
关键词
光伏发电 /
逆变器 /
谐振 /
前馈控制 /
双重约束 /
参数整定
Key words
photovoltaic generators /
inverter /
resonance /
feedforward control /
dual limitations /
parameter optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JAIN V, SINGH B.A multiple improved notch filter-based control fora single-stage PV system tied to a weak grid[J]. IEEE transactions on sustainable energy, 2019, 10(1): 238-247.
[2] WANG X F, BLAABJERG F.Harmonic stability in power electronic-based power systems: concept, modeling, and analysis[J]. IEEE transactions on smart grid, 2019, 10(3): 2858-2870.
[3] WANG R, SUN Q Y, MA D Z.Line impedance cooperative stability region identification method for grid-tied inverters under weak grids[J]. IEEE transactions on smart grid, 2020, 11(4): 2856-2866.
[4] 陈新, 王赟程, 龚春英, 等. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7): 2082-2094.
CHEN X, WANG Y C, GONG C Y, et al.Overview of stability research for grid-connected inverters based onimpedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7): 2082-2094.
[5] 马兴, 徐瑞林, 陈民铀, 等. 提高弱电网下并网逆变器电流质量的自适应控制方法[J]. 电网技术, 2019, 43(8): 2892-2900.
MA X, XU R L, CHEN M Y, et al.Adaptive control method for improving current quality ofgrid-connected inverter under weak grid[J]. Power system technology, 2019, 43(8): 2892-2900.
[6] 杨东升, 阮新波, 吴恒. 提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法[J]. 中国电机工程学报, 2014, 34(15): 2327-2335.
YANG D S, RUAN X B, WU H.A virtual impedance method to improve the performance of LCL-type grid-connected inverters under weak grid conditions[J]. Proceedings of the CSEE, 2014, 34(15): 2327-2335.
[7] 刘怀远, 徐殿国, 武建, 等. 并网换流器系统谐振的分析、检测与消除[J]. 中国电机工程学报, 2016, 36(4): 1061-1074.
LIU H Y, XU D G, WU J, et al.Analysis, detection and mitigation of resonance in grid-connected converter systems[J]. Proceedings of the CSEE, 2016, 36(4): 1061-1074.
[8] SUN J.Impedance-based stability criterion for grid-connected inverters[J]. IEEE transactions on power electronics, 2011, 26(11): 3075-3078.
[9] ZHANG X G, XIA D N, FU Z C, et al.An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters[J]. IEEE transactions on industry applications, 2018, 54(5): 5143-5151.
[10] SANG S, GAO N, CAI X, et al.A novel power-voltage control strategy for the grid-tied inverter to raise the rated power injection level in a weak grid[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(1): 219-232.
[11] 于文倩, 同向前, 燕聪, 等. 提高弱电网下 LCL 型并网逆变器稳定性的改进电网电压前馈策略[J]. 电气工程学报, 2019, 14(2): 79-85.
YU W Q, TONG X Q, YAN C, et al.An improved grid voltage feedforward strategy for LCL-typegrid-connected inverters in weak grid[J]. Journal of electrical engineering, 2019, 14(2): 79-85.
[12] 杨兴武, 王楠楠, 王毅, 等. 基于阻抗分析的LCL型并网逆变器相角补偿控制[J]. 太阳能学报, 2020, 41(5): 312-318.
YANG X W, WANG N N, WANG Y, et al.Phase-angle compensation control of LCL-type grid-connected inverter based on impedance analysis[J]. Acta energiae solaris sinica, 2020, 41(5): 312-318.
[13] 杨兴武, 王涛, 徐依明, 等. 基于虚拟电感的LCL型并网逆变器电网电压前馈控制策略[J]. 太阳能学报, 2020, 41(11): 56-63.
YANG X W, WANG T, XU Y M, et al.Voltage feedforward control of LCL grid-connected inverter based on virtual inductor[J]. Acta energiae solaris sinica, 2020, 41(11): 56-63.
[14] 李昕, 马群, 齐磊, 等. 基于高阻抗比的并网系统谐波抑制及无功控制策略[J]. 太阳能学报, 2018, 39(12): 3421-3429.
LI X, MA Q, QI L, et al.Harmonic suppression and reactive power control strategy for grid connected system based on high impedance ratio[J]. Acta energiae solaris sinica, 2018, 39(12): 3421-3429.
[15] 朱坤龙, 孙鹏菊, 王林, 等. 弱电网下LCL型并网逆变器的高鲁棒性加权平均电流控制策略[J]. 中国电机工程学报, 2020, 40(11): 3592-3602.
ZHU K L, SUN P J, WANG L, et al.High robustness weighted average current control for LCL-type grid-connected inverter in a weak grid[J]. Proceedings of the CSEE, 2020, 40(11): 3592-3602.
基金
河北省重点研发计划(19214405D); 国家自然科学基金(51677162)