摩擦和常温蠕变对风电螺栓预紧力松弛的敏感性分析

黄华, 王永和, 魏泰, 薛文虎, 姚嘉靖

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 289-296.

PDF(1992 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1992 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 289-296. DOI: 10.19912/j.0254-0096.tynxb.2021-0921

摩擦和常温蠕变对风电螺栓预紧力松弛的敏感性分析

  • 黄华1, 王永和1, 魏泰2, 薛文虎1, 姚嘉靖1
作者信息 +

SENSITIVITY ANALYSIS OF FRICTION AND ROOM TEMPERATURE CREEP ON PRELOAD RELAXATION OF WIND TURBINE BOLT

  • Huang Hua1, Wang Yonghe1, Wei Tai2, Xue Wenhu1, Yao Jiajing1
Author information +
文章历史 +

摘要

针对风力发电机螺栓由于预紧力松弛而导致的疲劳断裂问题,以风电塔筒环形法兰连接单段模型为研究对象,采用有限元的方法进行摩擦和常温蠕变对预紧力松弛的敏感性分析。结果表明:摩擦系数降低时螺纹最大应力降低了8.04%,平均应力增大了16.4%,且材料蠕变特性较低和屈服应力较高时预紧力仅分别减小了15.74%和6.37%。因此,当螺纹接触处和外部接触表面的摩擦较低,且螺栓材料具有较低蠕变特性和较高屈服强度时,螺栓抗蠕变性能较好且不易发生预紧力松弛现象。此时螺栓连接状态和预紧力分布较好,螺纹最大应力较小,且法兰间的接触压强和夹紧力较高,有效减小了预紧力松弛。研究结果为解决风电螺栓预紧力松弛问题提供了理论依据。

Abstract

Aiming at the problem of the fatigue fracture of wind turbine bolts due to preload relaxation, a single-section model of wind turbine tower ring flange connection is used to analyze the sensitivity of preload relaxation caused by friction and room temperature creep using the finite element method. The results show that the maximum thread stress decreases by 8.04% and the average stress increases by 16.4% when the friction coefficient is reduced, and the preload only decreases by 15.74% and 6.37% respectively when the material creep characteristics are low and the yield stress is high. Therefore, when the friction between the thread contact and the external contact surface is low, and the bolt material has low creep characteristics and high yield strength, the bolt has better creep resistance and is less prone to preload relaxation. At this time, the bolt connection state and preload distribution are better, the maximum stress of the thread is smaller, and the contact pressure and clamping force between the flanges are higher, which effectively reduces the preload relaxation. The research results provide a theoretical basis for solving the problem of preload relaxation of wind turbine bolts.

关键词

风力发电机 / 螺栓 / 摩擦 / 蠕变 / 预紧力松弛

Key words

wind turbines / bolts / friction / creep / preload relaxation

引用本文

导出引用
黄华, 王永和, 魏泰, 薛文虎, 姚嘉靖. 摩擦和常温蠕变对风电螺栓预紧力松弛的敏感性分析[J]. 太阳能学报. 2023, 44(1): 289-296 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0921
Huang Hua, Wang Yonghe, Wei Tai, Xue Wenhu, Yao Jiajing. SENSITIVITY ANALYSIS OF FRICTION AND ROOM TEMPERATURE CREEP ON PRELOAD RELAXATION OF WIND TURBINE BOLT[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 289-296 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0921
中图分类号: TH131    TM315   

参考文献

[1] 张凌宝, 赵鹏. 风电高强度螺栓扭矩系数选用的探讨[J]. 风能, 2013, 4(3): 106-111.
ZHANG L B, ZHAO P.Discussion on selection of torque coefficient of high-strength bolts in wind power[J]. Wind energy, 2013, 4(3): 106-111.
[2] 杜永强, 刘建华, 刘学通, 等. 偏心载荷作用下螺栓连接结构的松动行为研究[J]. 机械工程学报, 2018, 54(14): 74-81.
DU Y Q, LIU J H, LIU X T, et al.Research on self-loosening behavior of bolted joints under eccentric excitation[J]. Journal of mechanical engineering, 2018, 54(14): 74-81.
[3] YE H, HUANG Y M, LI P Y, et al.Virtual material parameter acquisition based on the basic characteristics of the bolt joint interfaces[J]. Tribology international, 2016, 95: 109-117.
[4] 赵兵, 张守阳, 王辉, 等. 九级盘装配连接螺栓预紧力评估与分析[J]. 中国机械工程, 2020, 31(13): 1570-1576.
ZHAO B, ZHANG S Y, WANG H, et al.Evaluation and analysis on bolt pre-tightening forces of nine-stage disc assembly[J]. China mechanical engineering, 2020, 31(13): 1570-1576.
[5] 谢元洪, 肖毅, 吕佳欣, 等. 复合材料螺栓连接松弛的弹-黏塑性分析方法[J]. 复合材料学报, 2020, 37(4): 824-836.
XIE Y H, XIAO Y, LYU J X, et al.An elastic-viscoplasitic approach for modelling preload relaxation of bolted composite joints[J]. Acta materiae compositae sinica, 2020, 37(4): 824-836.
[6] NEERAJ T, HOU D H, DAEHN G S, et al.Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J]. Acta materialia, 2000, 48(6): 1225-1238.
[7] LIU C, LIU P, ZHAO Z B, et al.Room temperature creep of a high strength steel[J]. Materials & design, 2001, 22(4): 325-328.
[8] KE S T, YU W L, WANG T G, et al.Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action[J]. Renewable energy, 2019, 136(5): 235-253.
[9] BRAITHWAITE J, GOENAGA I G, TAFAZZOLIMOGHADDAM B, et al.Sensitivity analysis of friction and creep deformation effects on preload relaxation in offshore wind turbine bolted connections[J]. Applied ocean research, 2020, 101(6): 1-10.
[10] MEHMANPARAST A.Prediction of creep crack growth behaviour in 316H stainless steel for a range of specimen geometries[J]. International journal of pressure vessels and piping, 2014, 120(1): 55-65.
[11] ALFREDSSON B, ARREGUI I L, LAI J.Low temperature creep in a high strength roller bearing steel[J]. Mechanics of materials, 2016, 100(6): 109-125.
[12] ANDERSSON P, KILPI L, HOLMBERG K, et al.Static friction measurements on steel against uncoated and coated cast iron[J]. Tribologia: finnish journal of tribology, 2016, 34(1-2): 5-40.
[13] YAMATOTO A.The theory and computation of threads connection[M]. Tokoy: Yokendo, 1980: 58-61.
[14] SOPWITH D G .The distribution of load in screw threads[J]. Archive proceedings of the institution of mechanical engineers, 1948, 159(1): 373-383.
[15] MEHMANPARAST A, DAVIES C M, WEBSTER G A, et al.Creep crack growth rate predictions in 316H steel using stress dependent creep ductility[J]. Materials at high temperatures, 2014, 31(1): 84-94.

基金

国家自然科学基金(51965034)

PDF(1992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/