载荷优化的海上漂浮式风电机组二阶滑模变桨控制

韩耀振, 李淑祯, 杜翠齐, 杨仁明, 侯明冬

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 313-319.

PDF(2154 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2154 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 313-319. DOI: 10.19912/j.0254-0096.tynxb.2021-0951

载荷优化的海上漂浮式风电机组二阶滑模变桨控制

  • 韩耀振, 李淑祯, 杜翠齐, 杨仁明, 侯明冬
作者信息 +

SECOND-ORDER SLIDING MODE PITCH CONTROL OF FLOATING OFFSHORE WIND TURBINES WITH LOAD OPTIMIZATION

  • Han Yaozhen, Li Shuzhen, Du Cuiqi, Yang Renming, Hou Mingdong
Author information +
文章历史 +

摘要

针对强非线性、强耦合的海上漂浮式风电机组动力学系统,提出一种基于二阶滑模的统一变桨控制策略,解决受海浪风速等随机干扰引起浮式支撑平台运动而产生的疲劳结构载荷及功率波动问题。构建漂浮式风电机组的不确定仿射非线性模型,基于风电机组“额定转速”设计积分滑模面,此“额定转速”不再是恒定值,而是取决于平台纵摇速度的变量,基于超螺旋算法实现二阶滑模变桨控制律。采用FAST和Matlab/Simulink联合仿真,所提出的方案与传统PI控制相比,对稳定高风速时风力发电机功率,抑制浮式支撑平台运动及减少叶根载荷具有更好的控制作用,对塔基也有较好的减载作用。

Abstract

A collective pitch control strategy based on second-order sliding mode is proposed for a strongly non-linear and strongly coupled offshore floating wind turbine dynamics system, which solves the problem of fatigue structural loads and power fluctuations caused by the motion of the floating support platform due to random disturbances such as wave and wind speed. Uncertain affine nonlinear model of a floating turbine is constructed. The integral sliding surface is designed based on the "rated speed" of the wind turbine, where the " rated speed" is no longer a constant value, but a variable depending on the pitch speed of the platform. A super-twisting algorithm is applied to conceive second-order sliding mode pitch control law. FAST and Matlab/Simulink are used to carry out collaborative simulation. The proposed control strategy is compared with the conventional PI control to verify the effectiveness. Experiments show that the proposed second-order sliding mode pitch control strategy has good control effect on stabilizing the wind turbine power at high wind speeds, restraining the movement of the floating support platform and reducing the blade root load, as well as having a good load reduction effect on the tower.

关键词

海上风电机组 / 滑模控制 / 统一变桨控制 / 载荷抑制 / 功率调节

Key words

offshore wind turbines / sliding mode control / collective pitch control / load reduction / power regulation

引用本文

导出引用
韩耀振, 李淑祯, 杜翠齐, 杨仁明, 侯明冬. 载荷优化的海上漂浮式风电机组二阶滑模变桨控制[J]. 太阳能学报. 2023, 44(1): 313-319 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0951
Han Yaozhen, Li Shuzhen, Du Cuiqi, Yang Renming, Hou Mingdong. SECOND-ORDER SLIDING MODE PITCH CONTROL OF FLOATING OFFSHORE WIND TURBINES WITH LOAD OPTIMIZATION[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 313-319 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0951
中图分类号: TK8   

参考文献

[1] 王超, 穆安乐, 邹荔兵, 等. 多海况下海上风力机组基础载荷特性分析[J]. 可再生能源, 2016, 34(9): 1363-1368.
WANG C, MU A L, ZOU L B, et al.Characteristic analysis of multiple ocean conditions for offshore wind turbine loads[J]. Renewable energy resources, 2016, 34(9): 1363-1368.
[2] 方龙, 李良碧, 李荣富. 海上漂浮式风力机支撑结构疲劳寿命研究[J]. 太阳能学报, 2016, 37(12): 3184-3188.
FANG L, LI L B, LI R F.Fatigue life research of support structure for floating offshore wind turbine[J]. Acta energiae solaris sinica, 2016, 37(12): 3184-3188.
[3] LARSEN T J, HANSON T D.A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[J]. Journal of physics: conference series, 2007, 75(1): 012073.
[4] JONKMAN J M.Influence of control on the pitch damping of a floating wind turbine[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008.
[5] SCHLIPF D, PAO L Y, CHENG P W.Comparison of feedforward and model predictive control of wind turbines using LIDAR[C]//2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 2012.
[6] WAKUI T, YOSHIMURA M, YOKOYAMA R.Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system[J]. Energy, 2017, 141: 563-578.
[7] 黄国燕, 朱敏. 基于状态空间的漂浮式风电机组控制策略研究[J]. 太阳能学报, 2021, 42(6): 337-341.
HUANG G Y, ZHU M.Control strategy research of floating wind turbines based on state-space[J]. Acta energiae solaris sinica, 2021, 42(6): 337-341.
[8] BAGHERIEH O, NAGAMUNE R.Gain-scheduling control of a floating offshore wind turbine above rated wind speed[J]. Control theory and technology, 2015, 13(2): 160-172.
[9] COLOMBO L, CORRADINI M L, IPPOLITI G, et al.Pitch angle control of a wind turbine operating above the rated wind speed: a sliding mode control approach[J]. ISA transactions, 2020, 96: 95-102.
[10] 肖帅, 杨耕, 耿华. 抑制载荷的大型风电机组滑模变桨距控制[J]. 电工技术学报, 2013, 28(7): 145-150.
XIAO S, YANG G, GENG H.Sliding-mode pitch control strategy for large wind turbines to reduce loads[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 145-150.
[11] UTKIN V.Discussion aspects of high-order sliding mode control[J]. IEEE transactions on automatic control, 2015, 61(3): 829-833.
[12] LIU X J, HAN Y Z.Decentralized multi-machine power system excitation control using continuous higher-order sliding mode technique[J]. International journal of electrical power & energy systems, 2016, 82: 76-86.
[13] MENEZES E J N, ARAÚJO A M, DA SILVA N S B. A review on wind turbine control and its associated methods[J]. Journal of cleaner production, 2018, 174: 945-953.
[14] LIU X J, HAN Y Z, WANG C C.Second-order sliding mode control for power optimisation of DFIG-based variable speed wind turbine[J]. IET renewable power generation, 2016, 11(2): 408-418.
[15] JONKMAN J M, BUHL JR M L. Fast user’s guide[R].NREL/EL-500-38230, 2005.
[16] LARREA-LEÓN C, SESHAGIRI S. A sliding mode pitch control for multi-megawatt offshore wind turbines[C]//2018 Clemson University Power Systems Conference (PSC), Clemson University, USA, 2018.
[17] 李蜀军, 李春, 王博, 等. 普通和恶劣海况下漂浮式风电场概念设计及平台动态响应[J]. 动力工程学报, 2020, 40(12): 1019-1027.
LI S J, LI C, WANG B, et al.Concept design and dynamic response of floating wind turbine platforms under normal and severe sea conditions[J]. Journal of Chinese Society of Power Engineering, 2020, 40(12): 1019-1027.
[18] LACKNER M A.An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines[J]. Wind energy, 2013, 16(3): 435-444.
[19] SEEBER R, HORN M.Stability proof for a well-established super-twisting parameter setting[J]. Automatica, 2017, 84: 241-243.
[20] HAN Y Z, LIU X J.Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems[J]. ISA transactions, 2016, 62: 193-201.
[21] LIU X J, HAN Y Z.Finite time control for MIMO nonlinear system based on higher-order sliding mode[J]. ISA transactions, 2014, 53(6): 1838-1846.

基金

国家自然科学基金(61803230); 山东省高等学校青创科技支持计划(2019KJN023); 山东省高等学校科技计划(J18KA330); 山东省重点研发计划(2019GSF109076)

PDF(2154 KB)

Accesses

Citation

Detail

段落导航
相关文章

/