考虑动态频率响应的风光水互补发电短期优化调度模型

张秋艳, 谢俊, 潘学萍, 刘明涛, 肖宇泽, 冯丽娜

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 516-524.

PDF(1742 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1742 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 516-524. DOI: 10.19912/j.0254-0096.tynxb.2021-0970

考虑动态频率响应的风光水互补发电短期优化调度模型

  • 张秋艳, 谢俊, 潘学萍, 刘明涛, 肖宇泽, 冯丽娜
作者信息 +

SHORT-TERM OPTIMAL SCHEDULING MODEL FOR WIND-SOLAR-HYDRO HYBRID POWER GENERATION SYSTEM CONSIDERING DYNAMIC FREQUENCY RESPONSE

  • Zhang Qiuyan, Xie Jun, Pan Xueping, Liu Mingtao, Xiao Yuze, Feng Li’na
Author information +
文章历史 +

摘要

针对风光并网会降低系统惯量、削弱系统调频能力的问题,综合考虑水电机组同步惯量、风电场和光伏电站的虚拟惯量和下垂控制作用,提出含风光水的多机系统动态频率响应模型,推导系统频率变化率约束、最低点频率偏差约束和准稳态频率偏差约束。基于此,为实现清洁能源利用最大化,以弃风、弃光、弃水最小及水库调度期末蓄能最大为目标,兼顾梯级水电、风电、光伏和发电系统的多种运行约束,构建风光水互补发电系统短期优化调度模型,并使用混合整数线性规划方法进行求解。最后通过算例仿真验证所提模型的有效性和适用性。

Abstract

In view of the problem that wind-solar grid integration will reduce the system inertia and weaken the system frequency regulation capability, considering the synchronous inertia of hydropower generators, the virtual inertia and droop control of wind farms and PV stations comprehensively, the dynamic frequency response model of multi-machine system with wind, solar and hydropower is proposed. The rate of change of frequency constraint, nadir frequency deviation constraint, as well as quasi-steady-state frequency deviation constraint, is deduced. Based on above, in order to maximize the utilization of clean energy, the goal is to minimize the amount of abandoned wind, solar and hydro power and maximize the stored energy of hydro stations at the end of the scheduling period. considering the multiple operational constraints of cascade hydropower, wind power, photovoltaics and the system, the short-term optimal scheduling model for the wind-solar-hydro coordinated generation system is constructed, and the mixed integer linear programming method is used to solve it. Finally, the simulation examples verify the validity and applicability of the proposed model.

关键词

虚拟惯量 / 下垂控制 / 频率响应 / 风光水互补发电 / 混合整数线性规划

Key words

virtual inertia / droop control / frequency response / wind-solar-hydro coordinated generation / mixed integer linear programming

引用本文

导出引用
张秋艳, 谢俊, 潘学萍, 刘明涛, 肖宇泽, 冯丽娜. 考虑动态频率响应的风光水互补发电短期优化调度模型[J]. 太阳能学报. 2023, 44(1): 516-524 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0970
Zhang Qiuyan, Xie Jun, Pan Xueping, Liu Mingtao, Xiao Yuze, Feng Li’na. SHORT-TERM OPTIMAL SCHEDULING MODEL FOR WIND-SOLAR-HYDRO HYBRID POWER GENERATION SYSTEM CONSIDERING DYNAMIC FREQUENCY RESPONSE[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 516-524 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0970
中图分类号: TM721   

参考文献

[1] PAPAEFTHYMIOU G, DRAGOON K.Towards 100% renewable energy systems: uncapping power system flexibility[J]. Energy policy, 2016, 92: 69-82.
[2] 鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51(1): 51-58.
LU Z X, TANG H Y, QIAO Y, et al.The impact of power electronics interfaces on power system frequency control: a review[J]. Electric power, 2018, 51(1): 51-58.
[3] AHMADI H, GHASEMI H.Security-constrained unit commitment with linearized system frequency limit constraints[J]. IEEE transactions on power systems, 2014, 29(4): 1536-1545.
[4] TENG F, TROVATO V, STRBAC G.Stochastic scheduling with inertia-dependent fast frequency response requirements[J]. IEEE transactions on power systems, 2016, 31(2): 1557-1566.
[5] MUZHIKYAN A, MEZHER T, FARID A M.Power system enterprise control with inertial response procurement[J]. IEEE transactions on power systems, 2018, 33(4): 3735-3744.
[6] PATURE M,MARKOVIC U, DELIKARAOGLOU S, et al.Stochastic unit commitment in low-inertia grids[J]. IEEE transactions on power systems, 2020, 35(5): 3448-3458.
[7] 徐野驰, 颜云松, 张俊芳, 等. 考虑预测误差与频率响应的随机优化调度[J]. 电网技术, 2020, 44(10): 3663-3670.
XU Y C, YAN Y S, ZHANG J F, et al.Stochastic optimal dispatching considering prediction error and frequency response[J]. Power system technology, 2020, 44(10): 3663-3670.
[8] AKBARI M, MADANI S M.Analytical evaluation of control strategies for participation of doubly fed induction generator-based wind farms in power system short-term frequency regulation[J]. IET renewable power generation, 2014, 8(3): 324-333.
[9] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
WEN Y F, YANG W F, LIN X H.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric power automatic equipment, 2020, 40(9): 211-222.
[10] 张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41(20): 6842-6855.
ZHANG W Q, WEN Y F, CHI F D, et al.Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41(20): 6842-6855.
[11] YAN R, SAHA T K.Frequency response estimation method for high wind penetration considering wind turbine frequency support functions[J]. IET renewable power generation, 2015, 9(7): 775-782.
[12] WOGRIN S, TEJADA-ARANGO D, DELIKARAOGLOU S, et al.Assessing the impact of inertia and reactive power constraints in generation expansion planning[J]. Applied energy, 2020, 280: 1-13.
[13] 葛晓琳, 刘亚, 符杨, 等. 考虑惯量支撑及频率调节全过程的分布鲁棒机组组合[J]. 中国电机工程学报,2021, 41(12): 4043-4057.
GE X L,LIU Y,FU Y,et al.Distributed robust unit commitment considering the whole process of inertia support and frequency regulations[J]. Proceedings of the CSEE, 2021, 41(12): 4043-4057.
[14] ZHANG Z Y, DU E S, TENG F, et al.Modeling frequency dynamics in unit commitment with a high share of renewable energy[J]. IEEE transactions on power systems, 2020, 35(6): 4383-4395.
[15] 荣俊杰, 周明, 李庚银. 考虑动态频率安全的风电参与负荷恢复优化调度[J]. 电网技术, 2022, 46(4): 1335-1345.
RONG J J, ZHOU M, LI G Y.Optimal dispatch of wind power participating in load restoration considering dynamic frequency security[J]. Power system technology, 2022, 46(4): 1335-1345.
[16] 张祥宇, 杨黎, 朱晓荣, 等. 光储发电系统的虚拟转动惯量控制[J]. 电力自动化设备, 2017, 37(9): 109-115.
ZHANG X Y, YANG L, ZHU X R, et al.Virtual rotational inertia control of PV generation system with energy storage devices[J]. Electric power automation equipment, 2017, 37(9): 109-115.
[17] 杨慧彪, 贾祺, 项丽, 等. 双级式光伏发电虚拟惯量控制策略[J]. 电力系统自动化, 2019, 43(10): 87-94.
YANG H B, JIA Q, XIANG L, et al.Virtual inertia control strategies for double-stage photovoltaic power generation[J]. Automation of electric power systems, 2019, 43(10): 87-94.
[18] 李世春, 曹润杰, 雷小林, 等. 基于改进SFR模型的含风电虚拟惯性/一次调频电力系统频率响应特性[J]. 可再生能源, 2019, 37(5): 694-700.
LI S C, CAO R J, LEI X L, et al.Frequency characteristics of power system involving virtual inertia and primary frequency regulation of wind power based on modified SFR model[J]. Renewable energy resources, 2019, 37(5): 694-700.
[19] GE X L, JIN Y, FU Y, et al.Multiple-cut benders decomposition for wind-hydro-thermal optimal scheduling with quantifying various types of reserves[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1358-1369.
[20] WU L, SHAHIDEPOUR M, LI Z.GENCO’s risk-constrained hydrothermal scheduling[J]. IEEE transactions on power systems, 2008, 23(4): 1847-1858.
[21] 魏守平. 水轮机调节系统仿真[M]. 武汉: 华中科技大学出版社, 2011: 161-163.
WEI S P.Simulation of hydraulic turbine regulating system[M]. Wuhan: Huazhong University of Science and Technology Press, 2011: 161-163.
[22] 肖欣, 周渝慧, 何时有, 等. 含流域梯级水电的水火风互补发电系统联合运行优化[J]. 电力自动化设备, 2018, 38(2): 100-108.
XIAO X, ZHOU Y H, HE S Y, et al.Optimal joint operation of hydro-thermal-wind hybrid power system with cascaded hydro power[J]. Electric power automation equipment, 2018, 38(2): 100-108.
[23] LI X, LI T J, WEI J H, et al.Hydro unit commitment via mixed integer linear programming: a case study of the three gorges project China[J]. IEEE transactions on power systems, 2014, 29(3): 1232-1241.

基金

国家重点研发计划(2019YFE0105200); 国家自然科学基金(U1965104)

PDF(1742 KB)

Accesses

Citation

Detail

段落导航
相关文章

/