基于ALMBO算法的PEMFC分数阶时域子空间模型研究

孙成硕, 戚志东, 叶伟琴, 单梁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 467-474.

PDF(2075 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2075 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 467-474. DOI: 10.19912/j.0254-0096.tynxb.2021-0971

基于ALMBO算法的PEMFC分数阶时域子空间模型研究

  • 孙成硕, 戚志东, 叶伟琴, 单梁
作者信息 +

RESEARCH ON FRACTIONAL ORDER TIME DOMAIN SUBSPACE MODEL OF PEMFC BASED ON ALMBO ALGORITHM

  • Sun Chengshuo, Qi Zhidong, Ye Weiqin, Shan Liang
Author information +
文章历史 +

摘要

针对质子交换膜燃料电池(PEMFC)发电过程复杂难以建模的问题,考虑PEMFC系统的分数阶特性,提出一种基于优化的分数阶时域子空间辨识方法,并建立PEMFC的分数阶状态空间模型。首先,将分数阶微分理论与子空间时域辨识方法相结合,采用Poisson滤波器对输入输出信号进行滤波处理,并引入权重矩阵提高辨识的精度;其次,对Poisson滤波器以及辨识的分数阶阶次寻优,提出一种变异反向学习的自适应帝王蝶优化算法(ALMBO),在迁移算子中引入变异反向学习策略、并融入自适应权重来提高寻优的精度,防止陷入局部最优解。最后,通过仿真结果验证算法的有效性,所得的PEMFC辨识模型能准确描述PEMFC的动态过程。

Abstract

The power generation process of proton exchange membrane fuel cell (PEMFC) is complex to describe, this paper, considering the fractional order characteristics of PEMFC system, proposes an optimization based fractional order time domain subspace identification method, and establishes a fractional order state space model of PEMFC. The fractional differential theory is combined with subspace identification method, and Poisson filter is used to filter the input and output data. The weight matrix is introduced to improve the accuracy of identification. Then, a mutation reverse learning adaptive monarch butterfly optimization algorithm (ALMBO) is proposed for the identification of fractional order and other parameters. The mutation reverse learning strategy is introduced into the transfer operator, and the adaptive weight is integrated to improve the optimization accuracy and prevent falling into the local optimal solution. Finally, the simulation results verify the effectiveness of the algorithm, and the identification model can accurately describe the dynamic process of PEMFC.

关键词

质子交换膜燃料电池 / 参数辨识 / 全局优化 / ALMBO

Key words

proton exchange membrane fuel cell / parameter identification / global optimization / ALMBO

引用本文

导出引用
孙成硕, 戚志东, 叶伟琴, 单梁. 基于ALMBO算法的PEMFC分数阶时域子空间模型研究[J]. 太阳能学报. 2023, 44(1): 467-474 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0971
Sun Chengshuo, Qi Zhidong, Ye Weiqin, Shan Liang. RESEARCH ON FRACTIONAL ORDER TIME DOMAIN SUBSPACE MODEL OF PEMFC BASED ON ALMBO ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 467-474 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0971
中图分类号: TP202+.2   

参考文献

[1] TALEB M A, GODOY E, BETHOUX O, et al.PEM fuel cell fractional order modeling and identification[J]. IFAC proceedings volumes, 2014, 47(3): 2125-2131.
[2] WANG Z L, YANG D S, ZHANG H G.Stability analysis on a class of nonlinear fractional-order systems[J]. Nonlinear dynamics, 2016, 86(2):1023-1033.
[3] DIVI S, DAS S, UDAY B, et al.Fractional order PID controller design for supply manifold pressure control of proton exchange membrane fuel cell[J]. Chemical product and process modeling, 2019, 14(3): 524-531.
[4] QI Z D, XU S Y, LIANG S, et al.Dynamic thermal modeling of PEMFC based on fractional order theory[J].Control and decision, 2015, 15(5): 1078-1081.
[5] TSIRIMOKOU G, PSYCHALINOS C, ELWAKIL A S, et al.Experimental verification of on-chip CMOS fractional-order capacitor emulators[J]. Electronics letters, 2016, 52(15): 1298-1300.
[6] XUE C S, QI Z D.Research on PEMFC fractional impedance characteristic modeling[C]// Proceedings of the 30th China Conference on Control and Decision Making, Shenyang, China, 2018.
[7] LENG B Y, QI Z D, XU S Y, et al.Research on electrical characteristics of state space modeling and parameter identifying of PEMFC[C]//34th Chinese Control Conference, Hangzhou, China, 2015.
[8] BIAN H J, QI Z D, XU S Y, et al.Research on PEMFC fractional model based on an improved genetic algorithm[C]//34th Chinese Control Conference, Hangzhou, China, 2015.
[9] 胡聪. PEMFC分数阶状态空间建模与自适应控制研究[D]. 南京: 南京理工大学, 2017.
HU C.Research on PEMFC fractional order state space modeling and adaptive control[D]. Nanjing: Nanjing University of Science and Technology , 2017.
[10] TALEB M A, GODOY E, BETHOUX O, et al.Frequential identification of a proton exchange membrane fuel cell (PEMFC) fractional order model[J]. IFAC proceedings volumes, 2014, 21(3): 214-220.
[11] 戚志东, 何永康, 戈卫平, 等. 质子交换膜燃料电池的分数阶非线性状态空间模型研究[J]. 控制理论与应用, 2019, 36(3): 86-93.
QI Z D, HE Y K, GE W P, et al.Study on fractional nonlinear state space model of proton exchange membrane fuel cell[J]. Control theory and applications, 2019, 36(3): 86-93.
[12] 王依柔, 张达敏, 徐航. 基于自适应扰动的疯狂蝴蝶算法[J]. 计算机应用研究, 2020, 349(11): 82-86.
WANG Y R, ZHANG D M, XU H.Crazy butterfly algorithm based on adaptive disturbance[J]. Computer application research, 2020, 349(11): 82-86.
[13] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学报, 2021, 3(1): 1-10.
LYU X, MU X D, ZHANG J, et al.Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 3(1): 1-10.
[14] WANG G G,DEB S, CUI Z H.Monarch butterfly optimization[J]. Neural computing and applications, 2019, 31(7): 512-533.
[15] JAO T C, SASABE T, UEMURA S, et al.Temperature and humidification effect on mass transfer of PEMFC via EIS and soft X-ray measurement[J]. ECS transactions, 2016, 75(14): 179-188.
[16] SHAN J, LIN R, CHEN X D, et al.EIS and local resolved current density distribution analysis on effects of MPL on PEMFC performance at varied humidification[J]. International journal of heat and mass transfer, 2018, 127(15): 1076-1083.
[17] ARVIND Y, BOGGAVARAPU B V, SATYAVARA P, et al.Application of artificial neural network and genetic algorithm based artificial neural network models for river flow prediction[J]. Revued′intelligence artificielle, 2020, 34(6): 421-431.
[18] AHANDANI M A, ALAVI-RAD H.Opposition-based learning in shuffled frog leaping: an application for parameter identification[J]. Information sciences, 2015, 291(1): 19-42.

基金

国家自然科学基金(61374153); 江苏省研究生科研与实践创新计划(KYCX21_0293)

PDF(2075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/