含分布式电源的配电网动态无功补偿优化策略研究

陈倩, 王维庆, 王海云, 武家辉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 525-535.

PDF(11588 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(11588 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 525-535. DOI: 10.19912/j.0254-0096.tynxb.2021-0974

含分布式电源的配电网动态无功补偿优化策略研究

  • 陈倩, 王维庆, 王海云, 武家辉
作者信息 +

RESEARCH ON DYNAMIC REACTIVE POWER COMPENSATION OPTIMIZATION STRATEGY OFDISTRIBUTION NETWORK WITH DISTRIBUTED GENERATION

  • Chen Qian, Wang Weiqing, Wang Haiyun, Wu Jiahui
Author information +
文章历史 +

摘要

兼顾分布式电源(DG)出力和负荷动态变化提出一种基于需求侧响应的配电网动态无功优化策略。该策略采用灰色关联度映射方法划分时段,在同一时段内协同优化不同类型变量,然后固定多个时段内并联电容器组(SCB)和有载调压变压器(OLTC)的状态,进行二次静态无功优化校正。针对模型特征,对不同类型变量采用混合协同进化算法进行求解,并提出基于Tent混沌映射和Levy飞行策略的改进麻雀算法提高协同求解效率。仿真结果表明:计及新能源出力变化和需求侧响应的所提策略能在降低求解规模的同时获取较高满意度的无功优化结果,且该混合协同进化算法在求解混合整数的非凸、非线性优化问题上具有一定优势。

Abstract

In response to the call of "carbon peak, carbon neutral", a large number of distributed energy (DG) are connected to the distribution network. This paper proposes a dynamic reactive power optimization strategy based on demand side response considering DG output and load dynamic change. In this strategy, the gray relational mapping method is used to divide the time periods, and different types of variables are optimized in the same time period. Then, the shunt capacitor bank (SCB) and on-line tap changer (OLTC) is fixed in multiple time periods, and the secondary static reactive power optimization correction is carried out. According to the characteristics of the model, different types of variables are solved by hybrid co-evolution algorithm, and an improved sparrow algorithm based on tent chaotic map and Levy flight strategy is proposed to improve the efficiency of solution. The simulation results show that the proposed strategy considering new energy output and demand response can optimize the load characteristics and obtain satisfactory reactive power optimization results while reducing the solution scale, moreover the hybrid co-evolution algorithm has certain advantages in solving mixed integer non convex nonlinear optimization problems.

关键词

分布式电源 / 无功功率 / 配电网 / 灰色关联度 / 协同进化算法 / Tent混沌

Key words

distributed generations / reactive power / distribution network / gray relational degree / co-evolution algorithm / tent chaos

引用本文

导出引用
陈倩, 王维庆, 王海云, 武家辉. 含分布式电源的配电网动态无功补偿优化策略研究[J]. 太阳能学报. 2023, 44(1): 525-535 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0974
Chen Qian, Wang Weiqing, Wang Haiyun, Wu Jiahui. RESEARCH ON DYNAMIC REACTIVE POWER COMPENSATION OPTIMIZATION STRATEGY OFDISTRIBUTION NETWORK WITH DISTRIBUTED GENERATION[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 525-535 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0974
中图分类号: TM614   

参考文献

[1] 高锋阳, 乔垚, 杜强, 等. 考虑光伏出力相关性的配电网动态无功优化[J]. 太阳能学报, 2018, 39(1): 101-109.
GAO F Y, QIAO Y, DU Q, et al.Dynamic reactive power optimization of distribution network considering correlated photovoltaic power output[J]. Acta energiae solaris sinica, 2018, 39(1): 101-109.
[2] 吴文传. 主动配电网网络分析与运行调控[M]. 北京: 科学出版社, 2016: 121-128.
WU W C.Active distribution network analysis and operation regulation[M]. Beijing: Science Press, 2016: 121-128.
[3] 刘公博, 颜文涛, 张文斌, 等. 含分布式电源的配电网动态无功优化调度方法[J]. 电力系统自动化, 2015, 39(15): 49-54.
LIU G B, YAN W T, ZHANG W B, et al.Optimization and dispatching method of dynamic reactive power in distribution network with distributed generators[J]. Automation of electric power systems, 2015, 39(15): 49-54.
[4] 朱曈彤, 顾洁, 金之俭, 等. 规划与运行融合的配电网无功补偿智能协调配置[J]. 电力自动化设备, 2019, 39(2): 36-43.
ZHU T T, GU J, JIN Z J, et al.Robust parameter identification of distribution line based on micro PMU[J]. Electric power automation equipment, 2019, 39(2): 36-43.
[5] 罗培, 孙吉浩. 有源配电网动态无功优化解耦方法研究[J]. 高电压技术, 2021, 47(4): 1323-1333.
LUO P, SUN J H.Research on decoupling method for dynamic reactive power optimization of active distribution network[J]. High voltage engineering, 2021, 47(4):1323-1333.
[6] LI Y, FENG B, LI G Q, et al.Optimal distributed generation planning in active distribution networks considering integration of energy storage[J]. Applied energy, 2018, 210: 1073-1081.
[7] 郭晓利, 赵莹, 曲楠, 等. 基于满意度的户用型微电网多属性需求响应策略[J]. 太阳能学报, 2021, 42(7): 21-27.
GUO X L, ZHAO Y, QU N, et al.Multi attribute demand response strategy of household microgrid based on satisfaction[J]. Acta energiae solaris sinica, 2021, 42(7): 21-27.
[8] 李秀磊, 耿光飞, 季玉琦, 等. 主动配电网中储能和需求侧响应的联合优化规划[J]. 电网技术, 2016, 40(12): 3803-3810.
LI X L, GENG G F, JI Y Q, et al.Joint optimization planning of energy storage and demand side response in active distribution network[J]. Power system technology, 2016, 40(12): 3803-3810.
[9] 张宏立, 李远梅. 基于滤子混合协同进化算法的无功优化[J]. 控制与决策, 2017, 32(9): 1701-1706.
ZHANG H L, LI Y M.The research of reactive power flow based on filter hybrid co-evolution algorithms[J]. Control and decision, 2017, 32(9): 1701-1706.
[10] 李笑竹, 王维庆, 王海云, 等. 考虑荷源双侧不确定性的跨区域灵活性鲁棒优化运行策略[J]. 高电压技术,2020, 46(5): 1538-1549.
LI X Z, WANG W Q, WANG H Y, et al.Robust optimized operation strategy for cross-region flexibility with bilateral uncertainty of load source[J]. High voltage engineering, 2020, 46(5): 1538-1549.
[11] XUE J K, SHEN B A. novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science &control engine, 2020, 8(1): 22-34.
[12] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
LYU X, MU X D, ZHANG J, et al.Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
[13] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Q H, ZHANG Q.Improved sparrow algorithm combining cauchy mutation and opposition-based learning[J]. Journal of frontiers of computer science and technology, 2021, 15(6): 1155-1164.
[14] WANG J, WANG W Q, YUAN Z, et al.A chaos disturbed beetle antennae search algorithm for a multiobjective distribution network reconfiguration considering the variation of load and DG[J]. IEEE access, 2020, 8: 97392-97407.
[15] 张超, 左高, 腾振山, 等. 基于需求侧响应的配电网优化调度研究[J]. 智慧电力, 2020, 48(2): 53-57, 91.
ZHANG C, ZUO G, TENG Z S, et al.Optimal dispatch of distribution network considering demand response[J]. Smart power, 2020, 48(2): 53-57, 91.
[16] 曹一家, 姚欢, 黄小庆, 等. 基于D-S证据理论的变电站通信系统信息安全评估[J]. 电力自动化设备, 2011, 31(6): 1-5.
CAO Y J, YAO H, HUANG X Q, et al.Security evaluation of substation communication system based on D-S theory[J]. Electric power automation equipment, 2011, 31(6): 1-5.
[17] 张丽, 徐玉琴, 王增平, 等. 包含分布式电源的配电网无功优化[J]. 电工技术学报, 2011, 26(3): 168-174.
ZHANG L, XU Y Q, WANG Z P, et al.Reactive power optimization for distribution system with distributed generators[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 168-174.
[18] WANG C, XIANG L, DENG Z L, et al.Reactive power optimization dispatch strategy in distribution network with distributed generators[J]. The journal of engineering, 2017, 2017(13): 1418-1422.
[19] 魏韡, 陈玥, 刘锋, 等. 基于主从博弈的智能小区代理商定价策略及电动汽车充电管理[J]. 电网技术, 2015, 39(4): 939-945.
WEI W, CHEN Y, LIU F, et al.Stackelberg game based retailer pricing scheme and EV charging management in smart residential area[J]. Power system technology, 2015, 39(4): 939-945.

基金

国家自然科学基金(52067020); 自治区重点实验室开放课题(2018D04005); 自治区教育厅重点项目(XJEDU2019I009)

PDF(11588 KB)

Accesses

Citation

Detail

段落导航
相关文章

/