以农林废弃生物质气化合成混合醇工艺为对象,利用混合生命周期评估方法对百吨级系统进行环境影响分析。通过构建系统的工艺模型和收集生命周期资源消耗及排放清单,研究农林业、收储运和制取等各阶段的投入和排放特性,对棉秆、玉米秸秆、木屑和枝丫柴4种原料制取系统的环境影响特性进行分析,并与5万吨级系统进行比较。结果表明:百吨级系统生命周期化石能源消耗和温室气体排放分别在589~734 kJ/MJ混合醇和63.2~80.8 g CO2eq/MJ混合醇范围内,制取阶段的电力消耗是最主要的影响因素,其次为系统设备设施投入,玉米秸秆混合醇的环境影响最大,这与原料碳含量低及混合醇收率低有关。
Abstract
Aiming at evaluating the environmental contribution of mixed alcohol production technology from biomass as agricultural and forestry residues, hybrid life cycle assessment (LCA) was applied to assess the properties of fossil fuel consumption and greenhouse gas (GHG) emission of a 100 t/a-scale system via gasification and catalytic conversion pathways. The effect of four types of feedstock-based alcohol system, including cotton straw, maize straw, wood chips and tree pruning, was analyzed, according to the simulation results from mixed alcohol production model and the life cycle inventory. The life cycle studied included the stages of agricultural/forestry planting, collection/storage/transportation, production and alcohol transportation. The results shows that the potentials of fossil fuel consumption and GHG emission of the 100 t/a-scale system are in the ranges of 589~734 kJ/MJ alcoholand 63.2~80.8 g CO2 eq/MJ alcohols respectively. The main contribution of the environmental potentials derive from the electricity input from grid and the production equipment/plant constructions in mixed alcohol production stage, which account for more than 80% of total ruglues. Of the four tipical of feedstocks, maize straw-based mixed alcohol system shows the highest environmental impact, which may be related to the low carbon content of maize straw and low alcohol yield. As the production capacity of maize straw-based alcohol system is expanded to 50,000 t/a, the potentials of fossil fuel consumption and GHG emission are decreased to 192 kJ/MJ alcohols and 16.6 g CO2 eq/MJ alcohols respectively as a combined cycle is applied to recovery heat for electricity generation and the system is self-sufficient of electricity.
关键词
生物质 /
能耗 /
温室气体 /
气化合成 /
混合醇
Key words
biomass /
fuel consumption /
greenhouse gases /
gasification and synthesis /
mixed alcohols
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DUTTA A, TALMADGE M, HENSLEY J, et al.Techno-economics for conversion of lignocellulosic biomass to ethanol by indirect gasification and mixed alcohol synthesis[J]. Environmental progress & sustainable energy, 2012, 31(2): 182-190.
[2] 陶炜, 肖军, 杨凯. 生物质气化费托合成制航煤生命周期评价[J]. 中国环境科学, 2018, 38(1): 383-391.
TAO W, XIAO J, YANG K.Life cycle assessment of jet fuel from biomass gasification and Fischer-Tropsch synthesis[J]. China environmental science, 2018, 38(1):383-391.
[3] OU L, LI B, DANG Q, et al.Understanding uncertainties in the economic feasibility of transportation fuel production using biomass gasification and mixed alcohol synthesis[J]. Energy technology, 2016, 4(3): 441-448.
[4] 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040.
GUO P K, LI P, CHANG C, et al.Advances in the application of computer simulation technology in biomass conversion[J]. Chemical industry and engineering progress, 2020, 39(8): 3027-3040.
[5] DAYSTAR J, REEB C, GONZALEZ R, et al.Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway[J]. Fuel processing technology, 2015, 138: 164-174.
[6] 郭金凤, 王树荣, 尹倩倩, 等. 生物质经甲醇法和费托法制取汽油的生命周期评价[J]. 太阳能学报, 2015, 36(9): 2052-2058.
GUO J F, WANG S R, YIN Q Q, et al.Life cycle assessment comparison of biomass to gasoline through MTG and STG methods[J]. Acta energiae solaris sinica, 2015, 36(9): 2052-2058.
[7] WANG C, CHANG Y, ZHANG L, et al.Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: system boundary and parameters[J]. Energy, 2018, 158: 121-127.
[8] 申立银, 陈进道, 严行, 等. 建筑生命周期物化碳计算方法比较分析[J]. 建筑科学, 2015, 31(4): 89-95.
SHEN L Y, CHEN J D, YAN X, et al.Comparative analysis of physico-chemical carbon calculation methods in building life cycle[J]. Building science,2015,31(4):89-95.
[9] LUO Y, IERAPETRITOU M.Comparison between different hybrid life cycle assessment methodologies: a review and case study of biomass-based p-xylene production[J]. Industrial & engineering chemistry research, 2020, 59(52): 22313-22329.
[10] 刘长奇, 黄亚继, 王昕晔, 等. 玉米秸秆制精制油的生命周期温室气体排放研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1871-1878.
LIU C Q, HUANG Y J, WANG X Y, et al.Study on greenhouse gas emission of refined oil from corn stalk during its life cycle[J]. Journal of Zhejiang University (engineering science), 2016, 50(10): 1871-1878.
[11] 马隆龙, 王铁军, 吴创之, 等. 木质纤维素化工技术及应用[M]. 北京: 科学出版社, 2010.
MA L L, WANG T J, WU C Z, et al.Chemical technology and application of lignocellulose[M]. Beijing: Science Press, 2010.
[12] YANG W, ZHU Y, CHENG W, et al.Characteristics of particulate matter emitted from agricultural biomass combustion[J]. Energy & fuels, 2017, 31(7): 7493-7501.
[13] DUTTA A, PHILLIPS S.Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomass[R]. Golden, Colorado: National Renewable Energy Laboratory, Department of Energy, US, 2009.
[14] VERA D, JURADO F, MARGARITIS N K, et al.Experimental and economic study of a gasification plant fuelled with olive industry wastes[J]. Energy for sustainable development, 2014, 23: 247-257.
[15] HUIJBREGTS M A J, STEINMANN Z J N, ELSHOUT P M F, et al. ReCiPe 2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. The international journal of life cycle assessment, 2017, 22(2): 138-147.
[16] ZHANG T, ZHAI Y, MA X, et al.Towards environmental sustainability: life cycle assessment-based water footprint analysis on China’s cotton production[J]. Journal of cleaner production, 2021, 313: 127925.
[17] 李巧. 基于火用理论的生物质分级气化制氢系统的综合性能评价[D]. 南京: 东南大学, 2019.
LI Q.Integrated performance evaluation of hydrogen production from biomass staged-gasification based on exergy theory[D]. Nanjing: Southeast University, 2019.
[18] KRZYZANIAK M, STOLARSKI M J, WARMINSKI K.Life cycle assessment of poplar production: environmental impact of different soil enrichment methods[J]. Journal of cleaner production, 2019, 206: 785-796.
[19] 洪梦姣, 杨欣, 袁言言, 等. 生物质制取车用燃料的综合性能评价[J]. 可再生能源, 2015, 33(12): 1904-1912.
HONG M J, YANG X, YUAN Y Y, et al.Comprehensive performance evaluation of vehicle fuel from biomass[J]. Renewable energy resources, 2015, 33(12): 1904-1912.
[20] DAYSTAR J, REEB C, VENDITTI R, et al.Life-cycle assessment of bioethanol from pine residues via indirect biomass gasification to mixed alcohols[J]. Forest products journal, 2012, 62(4): 314-325.
[21] WONG A, ZHANG H, KUMAR A.Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass[J]. Water research, 2016, 102: 330-345.
[22] CHEN G Q, CHEN Z M.Carbon emissions and resources use by Chinese economy 2007: a 135-sector inventory and input-output embodiment[J]. Communications in nonlinear science and numerical simulation, 2010, 15(11): 3647-3732.
[23] 衡丽君. 生物质定向热解制多元醇燃料过程模拟及全生命周期碳足迹研究[D]. 南京: 东南大学, 2019.
HENG L J.Study on process simulation of producing polyol fuel via oriented pyrolysis of biomass and full life cycle carbon footprint[D]. Nanjing: Southeast University, 2019.
基金
国家重点研究计划(2019YFB1503905); 国家自然科学基金(51776205)