对一台家用空气源热泵热水器进行冬季性能测试,研究室外空气温度、水箱温度不同时机组性能变化。基于测试数据分析影响机组性能的敏感因素,依据所得天津地区实测数据分析其冬季平均能效。结果表明:COP最低为1.30,具有节能效果;保证用水舒适度及机组运行稳定的情况下,45 ℃为水箱最佳设定温度;室外空气温度偏移较水箱平均温度偏移对系统性能更敏感;测试工况下热泵机组单独工作和启动电辅加热时全冬季的平均能效相差甚微,若用户设定机组在日最高温度时段开启加热,能获得更好的节能效果。
Abstract
The performance of a small household air source heat pump water heater was tested in winter, and the performance changes of the unit were studied when the outdoor air temperature and water tank temperature were different. Based on the test data, the sensitive factors affecting the unit performance are analyzed,and the average energy efficiency in winter is analyzed according to the measured data in Tianjin. The results show that the lowest COP is 1.30, which has energy-saving effect, under the condition of ensuring water comfort and stable operation of the unit, 45 ℃ is the best set temperature of the water tank. The outdoor air temperature offset is more sensitive to the system performance than the average temperature offset of the water tank. Under the test conditions,there is little difference in the average energy efficiency of the whole winter when the heat pump unit works alone and starts the electric auxiliary heating.If the user sets the unit to start heating at the highest temperature of the day,better energy-saving effect can be obtained.
关键词
能效分析 /
空气源热泵 /
热水器 /
环境温度 /
寒冷地区
Key words
efficiency analysis /
air source heat pump /
water heater /
ambient temperature /
cold area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHAO H, WANG F H, LI S T, et al.A performance comparison of serial and parallel solar-assisted heat pump heating systems in Xi’an, China[J]. Energy science & engineering, 2019, 7(4): 1379-1393.
[2] CHOI Y J, RYO Z O, YU J N.Impact of long-term operation of ground-source heat pump on subsurface thermal state in urban areas[J]. Sustainable cities & society, 2018, 38: 429-439.
[3] NALDI C, MORINI G L, ZANCHINI E.A method for the choice of the optimal balance-point temperature of air-to-water heat pumps for heating[J]. Sustainable cities & society, 2014, 12: 85-91.
[4] ZHENG X J, SHI R, YOU S J, et al.Experimental study of defrosting control method based on image processing technology for air source heat pumps[J]. Sustainable cities & society, 2019, 51: 101667.
[5] 张丽, 李征涛, 余鹏, 等. 空气源热泵热水器的性能分析[J]. 能源工程, 2018(1): 77-80.
ZHANG L, LI Z T, YU P, et al.Performance analysis of air source heat pump water heater[J]. Energy engineering, 2018(1): 77-80.
[6] 郝吉波, 王志华, 姜宇光, 等. 空气源热泵热水器系统性能分析[J]. 制冷与空调, 2013, 13(1): 59-62, 58.
HAO J B, WANG Z H, JIANG Y G, etal. Analysis of system performance of air source heat pump water heater[J]. Refrigeration and air-conditioning, 2013, 13(1): 59-62, 58.
[7] 王宇, 由世俊, 孙颖楷, 等. 空气源热泵热水器性能测试及运行评价研究[J]. 流体机械, 2017, 45(10): 77-82.
WANG Y, YOU S J, SUN Y K, et al.Performance test investigation and operational evaluation of air source heat pump water heater[J]. Fluid machinery, 2017, 45(10): 77-82.
[8] 郭兴国, 敖宇强, 刘向伟. 夏热冬冷和夏热冬暖地区家用空气能热水器的经济性分析[J]. 流体机械, 2019, 47(7): 80-84, 71.
GUO X G, AO Y Q, LIU X W.The economic analysis of air energy water heater for household purpose in hot summer and cold winter and hot summer and warm winter areas[J]. Fluid machinery, 2019, 47(7): 80-84, 71.
[9] 杨庆成, 施永康, 招就权, 等. 室外工况对空气源热泵热水器性能的影响[J]. 制冷与空调, 2020, 20(10): 67-72.
YANG Q C, SHI Y K, ZHAO J Q, et al.Impact of ambient conditions on performance of air source heat pump water heater[J]. Refrigeration and air-conditioning, 2020, 20(10): 67-72.
[10] 王伟, 倪龙, 马最良. 空气源热泵技术与应用[M]. 北京: 中国建筑工业出版社, 2017: 21-23.
WANG W, NI L, MA Z L.Air source heat pump technology and application[M]. Beijing: China Construction Industry Press, 2017: 21-23.
[11] 张辉, 韩啸霖, 弓南, 等. 高层住宅被动式节能设计因素敏感性分析[J]. 建筑节能, 2021, 49(3): 13-18.
ZHANG H, HAN X L, GONG N, et al.Sensitivity analysis of passive energy-saving design factors of high-rise residential buildings[J]. Journal of building energy efficiency, 2021, 49(3): 13-18.
基金
国家自然科学基金(52178083); 天津市研究生科研创新项目(2020YJSS083)