针对DTU(Technical University of Denmark)10 MW风力机,使用FAST软件对典型海况下不同水动力分量作用下的半潜浮式风力机系统进行全耦合分析,包括仅一阶波浪力作用、一阶波浪力和采用Newman近似计算的二阶差频波浪力作用、一阶波浪力和全域二次传递函数(quadratic transfer functions,QTFs)计算的二阶差频波浪力作用、一阶波浪力和全域QTFs计算的二阶和频波浪力作用以及一阶波浪力和全域QTFs计算的完整二阶波浪力作用,以对比分析二阶差频、和频波浪力对超大型半潜浮式风力机动态响应的影响;基于风力机结构疲劳计算理论,分析二阶差频和频波浪力对风力机结构疲劳破坏的影响。研究发现:在极端海况下,二阶差频波浪力对平台运动响应,二阶差频及和频波浪力对半潜浮式风力机结构荷载和疲劳破坏均产生显著影响。此外,Newman近似方法明显低估二阶差频波浪力对半潜浮式风力机动态响应的影响。
Abstract
For DTU (Technical University of Denmark, DTU) 10 MW wind turbines, the fully coupled analysis for the semi-submersible floating offshore wind turbine (FOWT) system was conducted by using FAST software under the typical sea states with different hydrodynamic components to compare and analyze the effect of second-order difference- and sum-frequency wave forces on the dynamic responses of the ultra-large semi-submersible FOWT, including only first-order wave force, first- and second-order difference-frequency wave forces calculated by Newman’s approximation and full-field quadratic transfer functions (QTFs),respectively, first- and second-order sum-frequency wave forces calculated by full-field QTFs, and first- and complete second-order wave forces calculated by full-field QTFs. Based on the fatigue calculation theory of the wind turbine structure, the effect of second-order difference- and sum-frequency wave forces on the fatigue failure of the wind turbine structure is analyzed. The study found that under extreme sea states,second-order difference-frequency wave force has a significant effect on the platform motions, and the second-order difference- and sum-frequency wave forces has a significant effect on the structural loads and fatigue failure of the semi-submersible FOWT. In addition, the Newman’s approximation method obviously underestimates the effect of second-order difference-frequency wave forces on the dynamic response of the semi-submersible FOWT.
关键词
海上风电 /
动态响应 /
水动力 /
疲劳分析 /
半潜浮式风力机 /
时域全耦合分析
Key words
offshore wind power /
dynamic response /
hydrodynamics /
fatigue analysis /
semi-submersible floating wind turbine /
time domain fully coupled analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘利琴, 肖昌水, 郭颖, 等. 基于Jourdain原理和有限元离散的浮式风机动力响应分析[J]. 哈尔滨工程大学学报, 2020, 41(3): 309-317.
LIU L Q, XIAO C S, GUO Y, et al.Analysis of the dynamic response of a floating wind turbine based on Jourdain principle and a finite element method[J]. Journal of Harbin Engineering University, 2020, 41(3): 309-317.
[2] ESTEBAN M D, DIEZ J J, LOPEZ J S, et al.Why offshore wind energy?[J]. Renewable energy, 2011, 36(2): 444-450.
[3] SNYDER B, KAISER M J.Ecological and economic cost-benefit analysis of offshore wind energy[J]. Renewable energy, 2009, 34(6): 1567-1578.
[4] SUN X J, HUANG D G, WU G Q.The current state of offshore wind energy technology development[J]. Energy, 2012, 41(1): 298-312.
[5] BAK C, BITSCHE R, YDE A, et al.Light Rotor: The 10-MW reference wind turbine[C]//Proceedings of EWEA, Bella Center, Copenhagen, Denmark, 2012.
[6] GARVEY S D.Structural capacity and the 20 MW wind turbine[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2010, 224(8): 1083-1115.
[7] ISLAM M T.Design, numerical modelling and analysis of a Semi-submersible floater supporting the DTU 10 MW wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2016.
[8] XUE W.Design, numerical modelling and analysis of a spar floater supporting the DTU 10 MW wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2016.
[9] TIAN X S.Design, numerical modelling and analysis of TLP floater supporting the DTU 10 MW wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2016.
[10] MATHA D, SCHLIPF M, CORDLE A, et al.Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2011.
[11] 胡天宇, 朱仁传, 范菊. 海上浮式风机平台弱非线性耦合动力响应分析[J]. 哈尔滨工程大学学报, 2018, 39(7): 1132-1137.
HU T Y, ZHU R C, FAN J.Analysis on weak nonlinear coupled dynamic response of floating offshore wind turbine platform[J]. Journal of Harbin Engineering University, 2018, 39(7): 1132-1137.
[12] BAYATI I, JONKMAN J, ROBERTSON A, et al.The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine[J]. Journal of physics: conference series iop publishing, 2014, 524(1): 012094.
[13] COULING A J, GOUPEE A J, ROBERTSON A N, et al.Importance of second-order difference-frequency wave-diffraction forces in the validation of a fast semi-submersible floating wind turbine model[R]. National Renewable Energy Lab(NREL), Golden, CO(United States), 2013.
[14] KARIMIRAD M.Modeling aspects of a floating wind turbine for coupled wave-wind-induced dynamic analyses[J]. Renewable energy, 2013, 53: 299-305.
[15] 金辉, 王腾. 考虑二阶波浪荷载效应的海上TLP浮式风机分析[J]. 海洋技术学报, 2019, 38(1): 66-72.
JIN H, WANG T.Analysis on the TLP floating offshore wind turbine considering the effect of second order wave load[J]. Journal of ocean technology, 2019, 38(1): 66-72.
[16] ZHAO Z, LI X, WANG W, et al.Analysis of dynamic characteristics of an ultra-large semi-submersible floating wind turbine[J]. Journal of marine science and engineering, 2019, 7(6): 169.
[17] LUAN C.Design and analysis for a steel braceless semi-submersible hull for supporting a 5-MW horizontal axis wind turbine[D]. Trondheim: Norwegian University of Science and Technology, 2018.
[18] BAK C, ZAHLE F, BITSCHE R, et al.Description of the DTU 10 MW reference wind turbine[R]. DTU Wind Energy Report-I-0092, 2013.
[19] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[R]. National Renewable Energy Laboratory(NREL), Golden, CO(United States), 2007.
[20] MORIARTY P J, HANSEN A C.AeroDyn theory manual[R]. National Renewable Energy Laboratory(NREL), Golden, CO(United States), 2005.
[21] LI J, TANG Y, YEUNG R W.Effects of second-order difference-frequency wave forces on a new floating platform for an offshore wind turbine[J]. Journal of renewable and sustainable energy, 2014, 6(3): 033102.
[22] JONKMAN J M, BUHL Jr M L. FAST user’s guide[R]. National Renewable Energy Laboratory (NREL), Golden, CO(United States), 2005.
[23] LEMMER F, RAACH S, SCHLIPF D, et al.Prospects of linear model predictive control on a 10 MW floating wind turbine[C]//Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Houston, TX, USA, 13-19 November, 2015.
[24] 赵志新, 李昕, 王文华, 等. 超大型和大型半潜浮式海上风力机动力响应对比[J]. 海洋工程, 2020, 38(2):101-110.
ZHAO Z X, LI X, WANG W H, et al.Comparison of dynamic response between ultra-large and large semi-submersible floating wind turbines[J]. The ocean engineering, 2020, 38(2): 101-110.
[25] 张友文, 王迎光. 浮式风机极限载荷与疲劳载荷对比分析[J]. 海洋工程, 2015, 33(3): 57-62, 70.
ZHANG Y W, WANG Y G.Comparison analysis about ultimate load and fatigue load of floating wind turbines[J]. The ocean engineering, 2015, 33(3): 57-62, 70.
[26] HAYMAN G J, BUHL Jr M.Mlife users guide for version 1.00[R]. National Renewable Energy Laboratory(NREL), Golden, CO(United States), 2012, 74(75): 112.
[27] 王瑞良. 5 MW风力发电机动态特性仿真[D]. 秦皇岛:燕山大学, 2015.
WANG R L.Dynamic characteristics simulation of 5 MW wind turbine[D]. Qinhuangdao: Yanshan University, 2015.
[28] DUARTE T M, SARMENTO A J, JONKMAN J M.Effects of second-order hydrodynamic forces on floating offshore wind turbines[C]//32nd ASME Wind Energy Symposium, National Harbor, Maryland, USA, 2014.
基金
国家自然科学基金(51939002; 52071058); 辽宁省兴辽英才计划(XLYC1807208); 中央高校基本业务科研费(DUT20ZD219)