分形结构橡胶、泡沫铝海上风力机防护装置性能研究

岳新智, 韩志伟, 缪维跑, 李春, 赵鑫磊, 岳敏楠

太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 320-327.

PDF(2133 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2133 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (5) : 320-327. DOI: 10.19912/j.0254-0096.tynxb.2021-0994

分形结构橡胶、泡沫铝海上风力机防护装置性能研究

  • 岳新智1, 韩志伟2, 缪维跑1, 李春1, 3, 赵鑫磊1, 岳敏楠1
作者信息 +

STUDY ON PERFORMANCE OF FRACTAL STRUCTURE RUBBER AND ALUMINUM FOAM PROTECTIVE DEVICE FOR OFFSHORE WIND TURBINE

  • Yue Xinzhi1, Han Zhiwei2, Miao Weipao1, Li Chun1, 3, Zhao Xinlei1, Yue Minnan1
Author information +
文章历史 +

摘要

为避免船舶-风力机碰撞造成巨大损失,提升海上风力机防护装置抗撞性能,将笛卡尔分形结构应用于橡胶及泡沫铝材料设计防护装置,基于非线性动力学理论,采用ANSYS/LS-DYNA模拟5000 t船舶碰撞安装分形结构橡胶、泡沫铝防护装置4 MW单立柱三桩海上风力机基础过程,对比分析研究不同材料防护装置采用分形结构后防护性能优劣。结果表明:较橡胶材料,泡沫铝防护装置吸能效果更好,显著提升防护装置能量耗散能力;分形结构作用于不同材料具有不同表现,应用于泡沫铝材料降低接触力效果更显著,而应用于橡胶在提升耗能、降低塔顶响应方面表现更佳。

Abstract

In order to prevent massive losses caused by collisions between ships and wind turbines, as well as to improve the anti-collision performance of offshore wind turbine protective devices, Cartesian fractal structure was applied to rubber and aluminum foam to design protective devices based on nonlinear dynamics theory. ANSYS/LS-DYNA was used to simulate the installation process of 4 MW single-column three-pile offshore wind turbine foundation with fractal structure rubber and aluminum foam protective devices in 5000 t ship collision. The protective performance of different material protective devices with fractal structure was compared and analyzed. The results show that compared with the rubber material, the aluminum foam protective device has better energy absorption effect and significantly improves the energy dissipation ability of the protective device. The fractal structure has different effects on different materials, and the effect of reducing contact force is more significant when applied to aluminum foam, and the performance of improving energy consumption and reducing the response of tower top is better when applied to rubber.

关键词

海上风电 / 风力机 / 分形 / 碰撞 / 橡胶 / 泡沫铝 / 防护装置

Key words

offshore wind power / wind turbines / fractals / collision / rubber / aluminum foam / protective device

引用本文

导出引用
岳新智, 韩志伟, 缪维跑, 李春, 赵鑫磊, 岳敏楠. 分形结构橡胶、泡沫铝海上风力机防护装置性能研究[J]. 太阳能学报. 2023, 44(5): 320-327 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0994
Yue Xinzhi, Han Zhiwei, Miao Weipao, Li Chun, Zhao Xinlei, Yue Minnan. STUDY ON PERFORMANCE OF FRACTAL STRUCTURE RUBBER AND ALUMINUM FOAM PROTECTIVE DEVICE FOR OFFSHORE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 320-327 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0994
中图分类号: TK513.5   

参考文献

[1] YUSTA J M, LACAL-ARÁNTEGUI R. Measuring the internationalization of the wind energy industry[J]. Renewable energy, 2020, 157: 593-604.
[2] 每日风电. 2020年全国新增风电装机7167万千瓦[EB/OL](2021-01-20)[2021-08-17]. http://www.chinawindnews.com/17318.html.
Wind Power Daily. China added 71.67 million kW of wind power in2020 [EB/OL]. (2021-01-20)[2020-08-17]. http://www.chinawindnews.com/17318. /html.
[3] 新华网. 习近平在气候雄心峰会上的讲话[EB/OL].(2020-12-12)[2021-08-18]. http://www.gov.cn/xinwen/2020-12/13/content_5569138.htm.
Xinhua Net. Xi Jinping at the Climate Ambition Summit[EB/OL]. (2020-12-12)[2021-08-18]. http://www.gov.cn/xinwen/2020-12/13/content_5569138.htm.
[4] DAI L J, EHLERS S, RAUSAND M, et al.Risk of collision between service vessels and offshore wind turbines[J]. Reliability engineering & system safety, 2013, 109: 18-31.
[5] Global Offshore Wind Healthy and Safety Organisation. G+2020 Incident data report[R/OL](2021-07-03)[2021-08-18]. https://www.gplusoffshorewind.com/__data/assets/pdf_file/0010/853246/G-Plus-Global-Offshors-Wind-Health-and-Safety-Organisationjk.pdf.
[6] JIA H K, QIN S Y, WANG R M, et al.Ship collision impact on the structural load of an offshore wind turbine[J]. Global energy interconnection, 2020, 3(1): 43-50.
[7] KITAMURA O.FEM approach to the simulation of collision and grounding damage[J]. Marine structures, 2002, 15(4-5): 403-438.
[8] BELA A, SOURNE H L, BULDGEN L, et al.Ship collision analysis on offshore wind turbine monopile foundations[J]. Marine structures, 2017, 51: 220-241.
[9] MOULAS D, SHAFIEE M, MEHMANPARAST A.Damage analysis of ship collisions with offshore wind turbine foundations[J]. Ocean engineering, 2017,143: 149-162.
[10] 韩志伟, 李春, 周红杰, 等. 海上风力机基础防护装置在船舶碰撞下的动态响应研究[J]. 机械强度, 2020, 42(1): 21-28.
HAN Z W, LI C, ZHOU H J, et al.Research on dynamic response with crashworthy devices of offshore wind turbine fundation to ship impact[J]. Journal of mechanical strength, 2020, 42(1): 21-28.
[11] REN N X, OU J P.A crashworthy device against ship-OWT collision and its protection effects on the tower of offshore wind farms[J]. China ocean engineering, 2009, 23(4): 594-602.
[12] ZHANG Y, LU M H, WANG C H, et al.Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs[J]. Composite structures, 2016, 144: 1-13.
[13] WANG J, ZHANG Y, HE N, et al.Crashworthiness behavior of Koch fractal structures[J]. Materials and design, 2018, 144: 229-244.
[14] YUE X Z, HAN Z W, LI C, et al.The study on structure design of fender of offshore wind turbine based on fractal feature during collision with ship[J]. Ocean engineering, 2021, 236: 109100.
[15] 郝二通, 柳英洲, 柳春光. 单桩基础海上风机受船撞击损伤和动力响应分析[J]. 大连理工大学学报, 2014, 54(5): 551-557.
HAO E T, LIU Y Z, LIU C G.Damage and dynamic response analyses of offshore wind turbine with monopile foundation subjected to ship impact[J]. Journal of Dalian University of Technology, 2014, 54(5): 551-557.
[16] LIM H K, LEE J S.On the structural behavior of ship’s shell structures due to impact loading[J]. International journal of naval architecture and ocean engineering, 2018, 10(1): 103-118.
[17] 姚艳春, 王国权, 赵诚, 等. 基于Mooney-Rivlin本构模型橡胶防尘罩的非线性有限元分析[J]. 北京信息科技大学学报(自然科学版), 2013, 28(4): 52-56.
YAO Y C, WANG G Q, ZHAO C, et al.Nonlinear finite element analysis of rubber dust cover based on Mooney-Rivlin constitutive model[J]. Journal of Beijing Information Science & Technology University, 2013, 28(4): 52-56.
[18] ERIKSSON A, NORDMARK A.Non-unique response of Mooney-Rivlin model in bi-axial membrane stress[J]. Computers & structures, 2014, 144: 12-22.
[19] DESHPANDE V S, FLECK N A.High strain rate compressive behaviour of aluminum alloy foams[J]. International journal of impact engineering, 2000, 24(3): 277-298.
[20] WU S R.A variational principle for dynamic contact with large deformation[J]. Computer methods in applied mechanics and engineering, 2009, 198(21-26): 2009-2015.
[21] 金艳玲. 分形集的Hausdorff测度与维数研究[M]. 太原: 山西经济出版社, 2017.
JIN Y L.Study on Hausdorff measure and Dimension of fractal sets[M]. Taiyuan: Shanxi Economic Publishing House, 2017.
[22] MA H W, YANG J, CHEN L Z.Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation[J]. Applied ocean research, 2018, 73: 179-189.
[23] HAO E T, LIU C G.Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: monopile, tripod, and jacket[J]. Ocean engineering, 2017, 130: 218-227.
[24] Det Norske Veritas, 2013. Offshore Standard DNV-OS-A101, Safety Principals and Arrangements[S]. Oslo, Norway, 2013.
[25] LIU X, JIANG D P, LIUFU K M, et al.Numerical investigation into impact responses of an offshore wind turbine jacket foundation subjected to ship collision[J]. Ocean engineering, 2022, 248: 110825.
[26] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002(4): 321-326.
WANG Z L, JIANG Z Y, GU Y N, et al.An added water mass model for numerical simulation of ship/ship collisions[J]. Explosion and shock waves, 2002, 22(4): 321-326.
[27] HALLQUIST O J.LS-DYNA theory manual[M]. Livemore: Livemore Software Technology Corporation, 2006.

基金

国家自然科学基金(51976131; 52006148; 52106262); 上海市“科技创新行动计划”地方院校能力建设项目(19060502200)

PDF(2133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/