考虑风荷载与冰荷载联合作用对大型单桩海上风电机组的影响,基于IEA 15 MW超大型单桩海上风电机组,采用一体化分析软件Openfast建立风冰联合作用下大型单桩耦合数值模型,开展超大型单桩海上风电机组在风冰联合作用下的动力响应分析。探究不同加载时长、冰激振动模型以及疲劳损伤组合方法对大型单桩海上风电机组的动力响应规律。计算结果显示:不同冰载数值计算模型塔基与泥面线载荷的计算结果差别较大,泥面线受冰荷载影响较大,同时泥面线位置较塔基位置承受更大的疲劳损伤,应重点关注。采用不同的荷载组合方向进行泥面线与塔基位置的疲劳损伤估计时,计算结果较风冰联合作用下疲劳损伤相对误差较大。因此,宜采用风冰联合加载的方法进行大型单桩海上风电机组的动力响应模拟,进而开展超大型单桩海上风电机组的疲劳损伤估计。
Abstract
Considering the combined effect of wind load and ice load on large single-pile offshore wind turbine, based on IEA 15 MW offshore wind turbine, coupled numerical model under the ice and wind condition is developed using the Openfast code. This paper carries out the dynamic analysis of a large monopile offshore wind turbine under the wind and ice interaction and explores the influence of different loading time durations, ice models, and different damage evaluation methods on the characteristics of the structural responses. The calculation results show that there is a great difference between the calculation results of the numerical calculation models with different ice loads on the tower and the mud surface line. The fatigue damage rate at the mudline is higher than that at the tower base, which should be paid more attention to. When the traditional load combination method is used to calculate the fatigue damage rate of wind turbine structure, the fatigue damage rate is smaller than that under the combined action of wind and ice, and the fatigue damage is underestimated. Therefore, the coupled wind-ice-structure analysis is recommended to estimate the fatigue damage for large monopile offshore wind turbines.
关键词
海上风电 /
支撑结构 /
数值分析 /
冰激强迫振动 /
疲劳损伤
Key words
offshore wind turbines /
supporting structure /
numerical analysis /
ice induced vibration /
fatigue damage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘伟民, 刘蕾, 陈凤云, 等. 中国海洋可再生能源技术进展[J]. 科技导报, 2020, 38(14): 27-39.
LIU W M, LIU L, CHEN F Y, et al.Technical progress of marine renewable energy in China[J]. Science and technology review, 2020, 38(14): 27-39.
[2] 葛晨, 乔继红. 提振全球气候治理雄心的中国担当[J]. 人民周刊, 2020, 127(23): 13.
GE C, QIAO J H.China’s role in boosting global climate governance ambition[J]. People’s weekly, 2020, 127(23): 13.
[3] 季顺迎, 王安良, 王宇新, 等. 渤海海冰现场监测的数字图像技术及其应用[J]. 海洋学报, 2011, 33(4):79-87.
JI S Y, WANG A L, WANG Y X, et al.Digital image technology and its application for the sea ice field observation in the Bohai Sea[J]. Acta oceanologica sinica, 2011, 33(4): 79-87.
[4] GWEC. Global wind report[R]. Brussels: GWEC, 2021:17-21.
[5] 张大勇, 王国军, 王帅飞, 等. 冰区海上风电基础的抗冰性能分析[J]. 船舶力学, 2018, 175(5): 101-113.
ZHANG D Y, WANG G J, WANG S F, et al.Ice-resistant performance analysis of offshore wind turbine foundation in ice zone[J]. Journal of ship mechanics, 2018, 175(5):101-113.
[6] 朱本瑞, 孙超, 黄焱. 海上单桩风机结构冰激振动响应分析[J]. 土木工程学报, 2021, 54(1): 88-96.
ZHU B R, SUN C, HUANG Y.Ice-induced vibration response analysis of monopile offshore wind turbine[J]. China civil engineering journal, 2021, 54(1): 88-96.
[7] 黄焱, 马玉贤, 罗金平, 等. 渤海海域单柱三桩式海上风电结构冰激振动分析[J]. 海洋工程, 2016, 34(5): 1-10.
HUANG Y, MA Y X, LUO J P, et al.Analyses on ice induced vibrations of a tripod piled offshore wind turbine structure in Bohai Sea[J]. The ocean engineering, 2016,34(5): 1-10.
[8] 周旋. 海上风机基础的冰荷载计算[C]//第十五届中国海洋(岸)工程学术讨论会论文集(中), 太原, 中国, 2011.
ZHOU X.Ice load calculation of offshore wind turbine foundation[C]//Proceedings of the 15th China Ocean (Shore) Engineering Symposium (middle), Taiyuan, China, 2011.
[9] SHI W, TAN X, GAO Z, et al.Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions[J]. Cold regions science and technology, 2016, 123: 121-139.
[10] HEINONEN J, RISSANEN S.Coupled-crushing analysis of a sea ice-wind turbine interaction-feasibility study of FAST simulation software[J]. Ships & offshore structures, 2017, 12(8): 1-8.
[11] 叶柯华, 李春, 王渊博, 等. 湍流风与浮冰联合作用下近海风力机动力学响应[J]. 热能动力工程, 2019, 34(9): 123-131.
YE K H, LI C, WANG Y B, et al.Dynamic response of offshore wind turbine under the combined load of turbulent wind and floating ice[J]. Journal of engineering for thermal energy and power, 2019, 34(9): 123-131.
[12] YE K H, LI C, YANG Y B, et al.Research on influence of ice-induced vibration on offshore wind turbines[J]. Journal of renewable and sustainable energy, 2019, 11(3): 33301.
[13] 杨冬宝, 高俊松, 刘建平, 等. 基于DEM-FEM耦合方法的海上风机结构冰激振动分析[J]. 力学学报, 2021, 53(3): 682-692.
YANG D B, GAO J S, LIU J P, et al.Analysis of ice-inducted structure vibration of offshore wind turbines based on DEM-FEM coupled method[J]. Chinese journal of theoretical and applied mechanics, 2021, 53(3): 682-692.
[14] 王国军, 张大勇, 王帅飞, 等. 寒区海上风电基础锥体动冰荷载[J]. 科学技术与工程, 2020, 20(31): 12820-12826.
WANG G J, ZHANG D Y, WANG S F, et al.Dynamic ice load of conical offshore wind turbine foundation in cold region[J]. Science technology and engineering, 2020, 20(31): 12820-12826.
[15] JONKMAN J M, BUHL JR M L. FAST user’s guide[R].NREL/EL-500-38230, 2005.
[16] JONKMAN J M, HAYMAN G J, JONKMAN B J, et al.AeroDyn v15 user’s guide and theory manual[R]. NREL Draft Report, 2015.
[17] MATLOCK H, DAWKINS W P, PANAK J J.Analytical model for ice-structure interaction[J]. Journal of the engineering mechanics division, 1971, 97(4): 1083-1092.
[18] KARR D G, TROESCH A W, WINGATE W C.Nonlinear dynamic response of a simple ice-structure interaction model[J]. Journal of offshore mechanics & arctic engineering, 1993, 115(4): 246-252.
[19] ASHBY M F, PALMER A C, THOULESS M, et al.Nonsimultaneous failure and ice loads on arctic structures[C]//Offshore Technology Conference, Houston, TX, USA, 1986.
[20] HAYMAN G J, BUHL JR M.Mlife users guide for version 1.00[R/OL]. https://www.nrel.gov/wind/nwtsc/assets/pdfs/mlife-user.pedf,CO, 2012, 74(75): 112.
[21] GAERTNER E, RINKER J, SETHURAMAN L, et al.Definition of the IEA 15-megawatt offshore reference wind[R]. NREL/TP-5000-75698, 2020.
[22] 岳前进. 渤海海冰研究及其工程应用中期研究报告:国家自然科学基金重点项目报告[R]. 大连: 大连理工大学, 1999: 1-17.
YUE Q J.Mid-term research report on Bohai Sea ice research and its engineering application: key project report of National Natural Science Foundation of China [R]. Dalian: Dalian University of technology, 1999: 1-17.
基金
国家自然科学基金(52071058; 52071301); 辽宁省兴辽英才计划(XLYC1807208); 中央高校基本业务科研费(DUT20ZD219)