有源电力滤波器神经终端滑模控制

侯世玺, 汪成, 付士利, 储云迪

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 279-287.

PDF(2634 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2634 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 279-287. DOI: 10.19912/j.0254-0096.tynxb.2021-1004

有源电力滤波器神经终端滑模控制

  • 侯世玺1, 汪成1, 付士利1, 储云迪2
作者信息 +

NEURAL TERMINAL SLIDING MODE CONTROL FOR ACTIVE POWER FILTER

  • Hou Shixi1, Wang Cheng1, Fu Shili1, Chu Yundi2
Author information +
文章历史 +

摘要

以电力电子装备为接口的高渗透率可再生能源并网已成为未来配电网的显著特性。可再生能源具有随机性和间歇性,作为其并网接口的电力电子装备也会导致电能质量恶化等问题。为提高电能质量,该文提出一种有源电力滤波器神经终端滑模控制方法。首先,结合分数阶思想和滑模控制理论设计一种分数阶终端滑模控制器,以保证误差有限时间收敛,并引入边界层技术降低抖振。然后,利用自组织模糊神经网络构造一种无模型控制方案以更好地应对各种不确定因素。所设计的自组织模糊神经网络控制器用于学习分数阶终端滑模控制器,不仅从根源上解决抖振问题,而且可继承原控制器的有限时间收敛性能,并满足李雅普诺夫理论框架下的稳定控制性能。仿真与实验结果表明:所提出的控制方法能有效解决可再生能源发电系统中的谐波问题。

Abstract

High permeability renewable energy interconnection taking power electronic equipment as interface has become a prominent feature of future power distribution networks. Renewable energy possesses randomness and intermittence, and power electronic equipment as grid-connection interfaces also will lead to the deterioration of power quality. In order to improve power quality, a neural terminal sliding mode control for active power filter is proposed in this paper. Firstly, using fractional order scheme and sliding mode theory, a fractional-order terminal sliding mode control (FOTSMC) is designed to ensure the finite-time error convergence, and the boundary layer technique is utilized to eliminate the chattering problem. Moreover, a model-free control scheme is designed using self-organizing fuzzy neural network (SOFNN) to better handle uncertainties. The SOFNN controller is designed for learning FOTSMC, which not only solves the chattering problem fundamentally, but also inherits the finite time convergence performance of FOTSMC and satisfies the stability control performance in the framework of Lyapunov theory. Simulation and experimental results demonstrate that the proposed control methods can effectively solve the harmonic problem in the renewable energy generation system.

关键词

模糊神经网络 / 滑模控制 / 扩展卡尔曼滤波 / 有源电力滤波器 / 可再生能源发电

Key words

fuzzy neural network / sliding mode control / extended Kalman filter / active power filter / renewable energy power

引用本文

导出引用
侯世玺, 汪成, 付士利, 储云迪. 有源电力滤波器神经终端滑模控制[J]. 太阳能学报. 2023, 44(2): 279-287 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1004
Hou Shixi, Wang Cheng, Fu Shili, Chu Yundi. NEURAL TERMINAL SLIDING MODE CONTROL FOR ACTIVE POWER FILTER[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 279-287 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1004
中图分类号: TP273   

参考文献

[1] 冬雷, 田昊雷, 肖辅荣, 等. 基于有源电力滤波与谐波补偿的孤岛检测方法[J]. 太阳能学报, 2021, 42(4):133-138.
DONG L, TIAN H L, XIAO F R, et al.Islanding detection method based on active power filter and harmonic compensation[J]. Acta energiae solaris sinica, 2021, 42(4): 133-138.
[2] 潘国兵, 郑智超, 汤文轩, 等. Z-域下基于快速谐波电流检测的有源滤波器设计方法[J]. 太阳能学报, 2020, 41(6): 196-203.
PAN G B, ZHENG Z C, TANG W X, et al.Design method of active power filter based on fast harmonic current detection in Z-region[J]. Acta energiae solaris sinica, 2020, 41(6): 196-203.
[3] KALAIR A, ABAS N, KALAIR A R, et al.Review of harmonic analysis, modeling and mitigation techniques[J]. Renewable and sustainable energy reviews, 2017, 78: 1152-1187.
[4] 孙孝峰, 谷岭, 李志超, 等. 新型配电系统背景谐波抑制策略的研究[J]. 太阳能学报, 2016, 37(6): 1359-1366.
SUN X F, GU L, LI Z C, et al.Damping strateg yresearch of background harmonic in novel power distribution system[J]. Acta energiae solaris sinica, 2016, 37(6): 1359-1366.
[5] HOU S X, FEI J T, CHEN C,et al.Finite-Time adaptive fuzzy-neural-network control of active power filter[J]. IEEE transactions on power electronics, 2019, 34(10): 10298-10313.
[6] 马兴, 刘会金, 崔雪, 等. 基于预测控制与H控制的有源电力滤波器设计[J]. 电工技术学报, 2016, 31(3): 50-57.
MA X, LIU H J, CUI X, et al.Active power filter design based on predictive control and H control[J]. Transactions of China Electrotechnical Society, 2016,31(3): 50-57.
[7] HOU S X, FEI J T.A self-organizing global sliding mode control and its application to active power filter[J]. IEEE transactions on power electronics, 2020, 35(10): 7640-7652.
[8] 孔令军, 张晓, 李晓迅, 等. 并联型有源电力滤波器直流侧电压模糊内模控制方法[J]. 电工技术学报, 2011,26(S1): 224-228.
KONG L J, ZHANG X, LI X X, et al.Research on DC-side voltage fuzzy internal model of shunt active power filter[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 224-228.
[9] 付东学, 赵希梅. 永磁直线同步电机自适应反推全局快速终端滑模控制[J]. 电工技术学报, 2020, 35(8): 1634-1641.
FU D X, ZHAO X M.Adaptive backstepping global fast terminal sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1634-1641.
[10] 罗雯, 赵峰, 高锋阳, 等. 基于新型指数趋近率和转子位置观测器的PMSM积分滑模控制[J]. 电测与仪表,2021, 58(1): 172-176.
LUO W, ZHAO F, GAO F Y, et al,The integral sliding mode control of PMSM based on a novel exponent reaching law and a rotor position observer[J]. Electrical measurement and instrumentation, 2021, 58(1): 172-176.
[11] 金鸿雁, 赵希梅, 原浩. 永磁直线同步电机动态边界层全局互补滑模控制[J]. 电工技术学报, 2020, 35(9): 1945-1951.
JIN H Y, ZHAO X M, YUAN H.Dynamic boundary layer global complementary sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1945-1951.
[12] 付东学, 赵希梅. 永磁直线同步电机自适应非奇异快速终端滑模控制[J]. 电工技术学报, 2020, 35(4): 717-723.
FU D X, ZHAO X M.Adaptive nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 717-723.
[13] 缪仲翠, 韩天亮, 党建武, 等. 带负载观测的感应电机动态分数阶滑模控制[J].太阳能学报, 2019, 40(2): 404-411.
MIAO Z C, HAN T L, DANG J W, et al.Dynamic fractional sliding mode control of induction motor with load observation[J]. Acta energiae solaris sinica, 2019, 40(2):404-411.
[14] 杨俊起, 高煜欣, 陈滟涛, 等. 基于干扰观测器的不确定非线性系统终端滑模控制器设计[J]. 控制与决策,2020, 35(1): 155-160.
YANG J Q, GAO Y X, CHEN Y T, et al.Disturbance observer-based terminal sliding mode controller design for uncertain nonlinear systems[J]. Control and decision, 2020, 35(1): 155-160.
[15] 谷志新, 张鑫宇. 生物质燃料成型工艺模糊神经网络预测模型研究[J]. 太阳能学报, 2015, 36(6): 1371-1376.
GU Z X, ZHANG X Y.Fuzzy neural network prediction model of briquetting process of biomass fuel[J]. Acta energiae solaris sinica, 2015, 36(6): 1371-1376.
[16] 徐凯, 王湘萍. 光伏发电最大功率点跟踪的智能集成控制[J]. 太阳能学报, 2018, 39(2): 536-543.
XU K, WANG X P.Intelligent integrated control for maximum powerpoint tracking of PV generation system[J]. Actaenergiaesolaris sinica,2018, 39(2): 536-543.
[17] 陆畅, 智勇军, 周志锋. 基于模糊神经网络的光伏发电系统功率控制方法[J]. 电测与仪表, 2017, 54(2): 46-51, 67.
LU C, ZHI Y J, ZHOU Z F.Power control strategies for PV generation system based on fuzzy-neural networks[J]. Electrical measurement and instrumentation, 2017, 54(2): 46-51, 67.
[18] 张圳, 王丽梅. 永磁同步直线电机自组织概率型模糊神经网络控制[J]. 电气技术, 2020, 21(12): 1-5, 16.
ZHANG Z, WANG L M.Permanent magnet linear synchronous motor self-organizing probabilistic fuzzy neural network control[J]. Electronic technology, 2020, 21(12): 1-5, 16.
[19] WANG N, ER M J, SUN J C, et al.Adaptive robust online constructive fuzzy control of a complex surface vehicle system[J]. IEEE transactions on cybernetics, 2016, 46(7): 1511-1523.
[20] RONG H J, YANG Z X, WONG P K, et al.A novel meta-cognitive fuzzy-neural model with backstepping strategy for adaptive control of uncertain nonlinear systems[J]. Neurocomputing, 2017, 230: 332-344.
[21] FEI J T, LU C.Adaptive fractional order sliding mode controller with neural estimator[J]. Journal of the Franklin Institute, 2018, 355(5): 2369-2391.
[22] FENG Y, ZHOU M H, HAN Q L, et al.Integral-type sliding-mode control for a class of mechatronic systems with gain adaptation[J]. IEEE transactions on industrial informatics, 2020, 16(8): 5357-5368.
[23] WANG N, ERM J, MENG X.A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks[J]. Neurocomputing, 2009, 72(16-18): 3818-3829.
[24] LIN F J, LU K C, KE T H, et al.Reactive power control of three-phase grid-connected PV system during grid faults using Takagi-Sugeno-Kang probabilistic fuzzy neural network control[J]. IEEE transactions on industrial electronics, 2015, 62(9): 5516-5528.
[25] FEI J T, CHEN Y.Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network[J]. IEEE transactions on power electronics, 2020, 35(9): 9904-9922.

基金

国家自然科学基金(62103132; 62003132); 中央高校基本科研业务费专项基金(B200202215; B200201052); 常州市科技创新计划(CJ20190056; CJ20190067); 江苏省研究生科研与实践创新计划(SJCX21_0183)

PDF(2634 KB)

Accesses

Citation

Detail

段落导航
相关文章

/