风光互补与电解水制氢系统负荷的协调稳定运行

陈梦萍, 任建兴, 李芳芹

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 344-350.

PDF(2057 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2057 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 344-350. DOI: 10.19912/j.0254-0096.tynxb.2021-1006

风光互补与电解水制氢系统负荷的协调稳定运行

  • 陈梦萍, 任建兴, 李芳芹
作者信息 +

COORDINATED AND STABLE OPERATION OF WIND SOLAR COMPLEMENTARITY AND LOAD OF ELECTROLYTIC WATER HYDROGEN PRODUCTION SYSTEM

  • Chen Mengping, Ren Jianxing, Li Fangqin
Author information +
文章历史 +

摘要

电解水制氢作为一种新型储能手段,可作为调整风光能源输出电力的绿色手段。该文以风力发电、光伏发电、电解制氢与燃料电池为研究对象,通过对风光互补发电系统与电解水制氢系统的输出输入功率进行建模仿真,协调优化控制风光电、电解槽、燃料电池以及系统负载的负荷变化要求,改善了风光发电电解水制氢系统与系统负荷之间的负荷不平衡问题,为风光互补可再生能源系统的稳定运行提供了理论依据。

Abstract

As a new means of energy storage, hydrogen production by electrolysis of water is a green means to adjust the output of electricity from wind energy. This paper takes wind power generation, photovoltaic power generation, electrolytic hydrogen production and fuel cell as the research object, and through modeling and simulation of the output and input power of the photovoltaic complementary power generation system and the electrolytic water hydrogen production system, coordinates and optimizes the control of the load change requirements of the photovoltaic power generation, electrolytic cell, fuel cell and system load, and improves the load imbalance between the photovoltaic power generation electrolytic water hydrogen production system and the system load, It provides a theoretical basis for the stable operation of the wind-solar complementary renewable energy system.

关键词

风力发电 / 光伏发电 / 风光互补 / 电解水制氢 / 燃料电池 / 仿真

Key words

wind power generation / photovoltaic power generation / complementary / hydrogen production by electrolysis of water / fuel cell / simulation

引用本文

导出引用
陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报. 2023, 44(3): 344-350 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1006
Chen Mengping, Ren Jianxing, Li Fangqin. COORDINATED AND STABLE OPERATION OF WIND SOLAR COMPLEMENTARITY AND LOAD OF ELECTROLYTIC WATER HYDROGEN PRODUCTION SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 344-350 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1006
中图分类号: TK513.5   

参考文献

[1] 王鹏. 践行“四个使命、一个合作”能源安全新战略[EB/OL]. http://www.china.com.cn/opinion/2021-05/27/content_77529888.html.
[2] 国家能源局. 2020年可再生能源发展情况[EB/OL]. http://www.nea.gov.cn/2021-01/30/c_139708580.htm.
[3] CAMPOS R A, NASCIMENTO L, RUTHER R.The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants[J]. Energy conversion and management, 2020, 221:113160.
[4] 王利猛, 王诗清, 石永富, 等. 计及储能装置平抑风光功率波动的微电网优化运行[J]. 太阳能学报, 2015, 36(1): 227-235.
WANG L M, WANG S Q, SHI Y F, et al.Optimal operation of microgrid considering energy storage devices to stabilize wind power fluctuations[J]. Acta energiae solaris sinica, 2015,36(1): 227-235.
[5] YIN X U, ZHANG F G, JU Z H, et al.An improved optimal capacity ratio design method for WSB/HPS system based on complementary characteristics of wind and solar[J]. Mathematical problems in engineering, 2015, 2015: 703623.
[6] 蔡国伟, 孔令国, 杨德友, 等. 大规模风光互补发电系统建模与运行特性研究[J]. 电网技术, 2012, 36(1): 65-71.
CAI G W, KONG L G, YANG D Y, et al.Research on modeling and operation characteristics of large-scale wind solar complementary power generation system[J]. Power system technology, 2012, 36(1): 65-71.
[7] MOHD A, KULDEEP K, SAKET V, et al.Renewable sources based DC microgrid using hydrogen energy storage: modelling and experimental analysis[J]. Sustainable energy technologies and assessments, 2020, 42: 100840.
[8] KORPAS M.Distributed energy systems with wind power and energy storage[D]. Norway: Norwegian Uruversity of Science and Technology, 2004.
[9] TAKAHASHI R, KINOSHITA H, MURATA T, et al.Output power smoothing and hydrogen production by using variable speed wind generators[J]. IEEE transactions on industrial electronics, 2010, 57(2): 485-493.
[10] RAMPRABHU R, SANJAY K, KUMAR S V, et al.An overview of recent developments in silicon solar cells[C]//IEEE International Conference on Advanced Computing and Communication Systems, Kanyakumari India, 2019: 1120-1122.
[11] 陈俊帆, 赵生盛, 高天, 等. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
CHEN J F, ZHAO S S, GAO T, et al.Latest progress and development trend of high efficiency monocrystalline silicon solar cells[J]. Materials reports, 2019, 33(1): 110-116.
[12] MASUKO K, SHIGEMATSU M, HASHIGUCHI T, et al.Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE journal of photovoltaics, 2014, 4(6):1433-1435.
[13] ZAINURI M A A M, RADZI M A M, AZURA CHE SOH A C, et al. Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost DC-DC converter[J]. IET renewable power generation, 2014, 8(2): 183-194.
[14] 顾洮, 袁野. 质子交换膜燃料电池仿真建模与分析[J].电源技术, 2021, 45(4): 459-462.
GU T, YUAN Y.Simulation modeling and analysis of proton exchange membrane fuel cell[J]. Chinese journal of power sources, 2021, 45(4): 459-462.

PDF(2057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/