基于扰动观测的漂浮式海上风力机主动滑模结构控制研究

胡银龙, 徐进, 石尚, 孙永辉, 李志华

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 74-79.

PDF(2421 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2421 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 74-79. DOI: 10.19912/j.0254-0096.tynxb.2021-1022

基于扰动观测的漂浮式海上风力机主动滑模结构控制研究

  • 胡银龙, 徐进, 石尚, 孙永辉, 李志华
作者信息 +

ACTIVE SLIDING MODE STRUCTURAL CONTROL OF FLOATING OFFSHORE WIND TURBINES BASED ON DISTURBANCE OBSERVATION

  • Hu Yinlong, Xu Jin, Shi Shang, Sun Yonghui, Li Zhihua
Author information +
文章历史 +

摘要

针对漂浮式海上风力机主动结构控制问题,提出一种基于扰动观测的主动滑模控制方法,并应用风力机仿真工具FAST验证所提方法的有效性。在扰动二阶导数有界的前提下,理论证明观测器的稳定性和估计误差的有界性,从而有效估计匹配扰动和非匹配扰动。理论证明一类积分型滑模面的有限时间收敛性和闭环系统稳定性。基于FAST的仿真表明:所提出的主动调谐质量阻尼器(TMD)控制方法与最优被动TMD相比,主动TMD系统的漂浮平台俯仰角度和塔顶位移的均方根值可分别降低11.88%和13.56%,有效提升了风力机承受风浪载荷的能力。

Abstract

In terms of the active structure control problem of floating offshore wind turbines, an active sliding mode control method based on disturbance observation is proposed. The effectiveness of the proposed method is verified by using the wind turbine simulation tool FAST. On the premise that the second derivative of the disturbance is bounded, the stability of the derived disturbance observer is proved with bounded estimated errors, which means that the proposed disturbance observer is effective in estimating the matched and mismatched disturbances. A sliding mode controller is proposed based on an integral type sliding surface, where the finite time convergence and the closed-loop system stability are proved. Simulation results based on FAST show that the platform pitch angle and the tower-top displacement can be effectively reduced by using the proposed disturbance observer based sliding control method. Compared with the optimal passive TMD systems, the RMS values of the platform pitch angle and the tower-top displacement can be reduced by 11.88% and 13.56%, respectively.

关键词

海上风力机 / 振动控制 / 滑模控制 / 结构控制 / 扰动观测控制

Key words

offshore wind turbines / vibration control / sliding mode control / structural control / disturbance observer control

引用本文

导出引用
胡银龙, 徐进, 石尚, 孙永辉, 李志华. 基于扰动观测的漂浮式海上风力机主动滑模结构控制研究[J]. 太阳能学报. 2023, 44(2): 74-79 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1022
Hu Yinlong, Xu Jin, Shi Shang, Sun Yonghui, Li Zhihua. ACTIVE SLIDING MODE STRUCTURAL CONTROL OF FLOATING OFFSHORE WIND TURBINES BASED ON DISTURBANCE OBSERVATION[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 74-79 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1022
中图分类号: TK87   

参考文献

[1] ZUO H, BI K, HAO H.A state-of-the-art review on the vibration mitigation of wind turbines[J]. Renewable and sustainable energy reviews, 2020, 121: 109710.
[2] 金鑫, 林益帆, 谢双义, 等. 柱状漂浮式风力机结构振动控制[J]. 太阳能学报, 2021, 42(1): 210-214.
JIN X, LIN Y F, XIE S Y, et al.Structural vibration control of spar-type floating wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 210-214.
[3] 张晓峰, 金鑫, 林益帆, 等. 基于TMD的漂浮式风力机振动控制[J]. 太阳能学报, 2020, 41(10): 292-300.
ZHANG X F, JIN X, LIN Y F, et al.Vibration control of floating wind turbine based on TMD[J]. Acta energiae eolaris einica, 2020, 41(10): 292-300.
[4] 金鑫, 林益帆, 谢双义, 等. 基于TMD的半潜式风力机振动控制[J]. 太阳能学报, 2020, 41(6): 86-93.
JIN X, LIN Y F, XIE S Y, et al.Vibration control of semi-submersible wind turbine based on TMD[J]. Acta energiae solaris sinica, 2020, 41(6): 86-93.
[5] STEWART G, LACKNER M.Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE transactions on control systems technology, 2013, 21(4): 1090-1104.
[6] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[7] SARKAR S, CHAKRABORTY A.Development of semi-active vibration control strategy for horizontal axis win turbine tower using multiple magneto-rheological tuned liquid column dampers[J]. Journal of sound and vibration, 219, 457(29): 15-36.
[8] SUN C.Semi-active control of monopile offshore wind turbines under multi-hazards[J]. Mechanical systems and signal processing, 2018, 99(15): 285-305.
[9] 丛聪, 杨冰. 基于调谐质量阻尼器的风力机叶片振动分散控制研究[J]. 太阳能学报, 2019, 40(1): 179-184. CONG C, YANG B. Decentralized control of vibrations in wind turbine blades using multiple active tuned mass damper[J]. Acta energiae solaris sinica, 2019, 40(1): 179-184.
[10] 金鑫, 林益帆, 谢双义, 等. 漂浮式风力机混合振动控制[J]. 太阳能学报, 2020, 41(11): 261-266.
JIN X, LIN Y F, XIE S Y, et al.Hybrid vibration control of floating wind turbines[J]. Acta energiae solaris sinica, 2020, 41(11): 261-266.
[11] ZHANG Y M, ZHAO X W, WEI X.Robust structural control of an underactuated floating wind turbine[J]. Wind energy, 2020, 23: 2166-2185.
[12] MORENO-VALENZUELA J, AGUILAR-AVELAR C.Motion Control of Underactuated Mechanical Systems[M]. Springer international publishing AG, 2018.
[13] HUANG J, RI S, FUKUDA T, et al.A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties[J]. IEEE transactions on automatic control, 2019, 64(6): 2480-2487.
[14] 梁潇, 王杨, 何慰, 等. 基于能量分析的欠驱动飞行吊运系统协同控制[J]. 控制理论与应用, 2020, 37(12): 2473-2481.
LIANG X, WANG Y, HE W, et al.Cooperative control for underactuated aerial transportation systems via the energy-based analysis[J]. Control theory & applications, 2020, 37(12): 2473-2481.
[15] 王冬霞, 贾英宏, 金磊,等. 欠驱动航天器姿态稳定的分层滑模控制器设计[J]. 宇航学报, 2013, 34(1): 17-24.
WANG D X, JIA Y H, JIN L, et al.Hierarchical sliding-mode control for attitude stabilization of an underactuated spacecraft[J]. Journal of astronautics, 2013, 34(1): 17-24.
[16] WU X Q, XU K X, HE X X.Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances[J]. Mechanical systems and signal processing, 2020, 139: 106631.
[17] LU B, FANG Y C.Gain-adapting coupling control for a class of underactuated mechanical systems[J]. Automatica, 2021, 125: 109461.
[18] LACKNER M A, ROTEA M A, Structural control of floating wind turbines[J], Mechatronics, 2011, 21(4): 704-719.
[19] LI X W, GAO H J, Load mitigation for a floating wind turbine via generalized H structural control[J]. IEEE transactions on industrial electronics, 2016, 63(1): 332-342.
[20] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. Golden national renewable energy laboratory technical report, 2009.
[21] DING F, HUANG J, WANG Y J, et al.Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form[J]. Nonlinear dynamics, 2017, 90: 2571-2582.
[22] ZHANG J H, LIU X W, XIA Y Q, et al.Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances[J]. IEEE transactions on industrial electronics, 2016, 63(11): 7040-7048.
[23] 张立, 丁勤卫, 李春, 等. 风载荷对不同海上浮式风力机平台运动特性影响对比研究[J]. 太阳能学报, 2021, 42(9): 292-311.
ZHANG L, DING Q W, LI C, et al.Comparative study on effects of wind load on motion characteristics of different offshore floating wind turbine platforms[J]. Acta energiae solaris sinica, 2021, 42(9): 292-311.
[24] MORIARTY P, HANSEN A C.AeroDyn theory manual[R]. Golden national renewable energy laboratory technical report, 2004.
[25] JONKMAN J M.Dynamics modelling and loads analysis of an offshore floating wind turbine[R]. Golden National Renewable Energy Laboratory Technical Report, 2007.

基金

国家自然科学基金(62173125; 62073121; 62003131); 国家自然科学基金-国家电网联合基金(U1966202); 中央高校基本科研业务费专项资金(B210202058)

PDF(2421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/