受扰分数阶直驱风电机组混沌运动的H鲁棒控制

杨莉, 丁菊霞, 黄天民, 黄苏丹

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 46-54.

PDF(2698 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2698 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 46-54. DOI: 10.19912/j.0254-0096.tynxb.2021-1024

受扰分数阶直驱风电机组混沌运动的H鲁棒控制

  • 杨莉1,2, 丁菊霞2, 黄天民2, 黄苏丹3
作者信息 +

H ROBUST CONTROL FOR CHAOTIC MOTION OF FRACTIONAL ORDER D-PMSG WITH LOAD DISTURBANCE

  • Yang Li1,2, Ding Juxia2, Huang Tianmin2, Huang Sudan3
Author information +
文章历史 +

摘要

针对含有负载扰动的非线性分数阶直驱永磁同步风力发电机组(D-PMSG)存在混沌现象,提出一种抑制混沌运动的新型H鲁棒控制方法。在非线性D-PMSG混沌模型下,验证负载扰动会导致D-PMSG呈现混沌现象。采用Takagi-Sugeno(T-S)模型建立受扰分数阶D-PMSG模糊混沌模型。基于并行分布补偿(PDC)控制理论,提出一种新型模糊状态反馈H鲁棒控制器设计方法。利用分数阶Lyapunov稳定性理论,依据Schur补引理和合同变换,以线性矩阵不等式(LMIs)形式推导出D-PMSG系统Mittag-Leffler稳定的充分条件。Matlab仿真结果表明,该控制器在分数阶阶次变化和外界负载扰动随机变化情况下具有良好的控制性能和较强的鲁棒性。

Abstract

Aiming at the chaotic phenomenon of nonlinear fractional order direct-driven permanent magnet synchronous generator (D-PMSG) based wind turbine systems (WTSs) with load disturbance, a new H robust control method to suppress chaotic motion is proposed. Under the nonlinear chaotic model, it is verified that the load disturbance leads to D-PMSG from stable state to chaotic motion. The fuzzy chaotic model of fractional order D-PMSG with disturbance is established through Takagi-Sugeno (T-S) model. Based on parallel distributed compensation (PDC) control theory, a new design method of fuzzy state feedback H robust controller is proposed. Applying fractional Lyapunov stability theory, according to Schur complement lemma and contract transformation, a sufficient condition for Mittag-Leffler stability of D-PMSG is given in form of linear matrix inequalities (LMIs). The simulation results in Matlab show that the presented controller has good control performance and strong robustness under fractional order varying and random changing of external load disturbance.

关键词

风电机组 / 模糊控制 / 混沌控制 / 鲁棒控制 / 负载扰动 / 分数阶系统

Key words

wind turbines / fuzzy control / chaos control / robust control / load disturbance / fractional order systems

引用本文

导出引用
杨莉, 丁菊霞, 黄天民, 黄苏丹. 受扰分数阶直驱风电机组混沌运动的H鲁棒控制[J]. 太阳能学报. 2023, 44(3): 46-54 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1024
Yang Li, Ding Juxia, Huang Tianmin, Huang Sudan. H ROBUST CONTROL FOR CHAOTIC MOTION OF FRACTIONAL ORDER D-PMSG WITH LOAD DISTURBANCE[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 46-54 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1024
中图分类号: TP273    TM315   

参考文献

[1] KUMAR Y, RINGENBERG J, DEPURU S S, et al.Wind energy: trends and enabling technologies[J]. Renewable and sustainable energy reviews, 2016, 53: 209-224.
[2] DUONG M Q, GRIMACCIA F, LEVA S, et al.Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system[J]. Renewable energy, 2014, 70: 197-203.
[3] GAUTAM D, VITTAL V, HARBOUR T.Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE transactions on power systems, 2009, 24(3): 1426-1434.
[4] 杨俊华, 蔡浩然, 邹子君, 等. 双馈风电系统混沌运动分析及解耦自适应反步法控制[J]. 太阳能学报, 2019, 40(12): 3605-3612.
YANG J H, CAI H R, ZOU Z J, et al.Chaos analysis and decoupling adaptive backstepping control of doubly fed wind power system[J]. Acta energiae solaris sinica, 2019, 40(12): 3605-3612.
[5] 任丽娜, 刘爽爽, 杨欢欢, 等. 海上风电机组的无速度传感器控制[J]. 太阳能学报, 2019, 40(8): 2187-2195.
REN L N, LIU S S, YANG H H, et al.Speed sensorless control of offshore wind power system[J]. Acta energiae solaris sinica, 2019, 40(8): 2187-2195.
[6] ABOUDRAR I, EL HANI S, MEDIOUNI H, et al.Modeling and robust control of a gird connected direct drive PMSG wind turbine by ADRC[J]. Power engineering and electrical engineering, 2018, 16(4): 402-413.
[7] LEE S W, CHUN K H.Adaptive sliding mode control for PMSG wind turbine systems[J]. Energies, 2019, 12(4): 595-611.
[8] AKINRINDE A, SWANSON A, TIAKO R.Dynamic behavior of wind turbine generator configurations during ferroresonant conditions[J]. Energies, 2019, 12(4): 639.
[9] 杨国良, 李惠光. 直驱式永磁同步风力发电机中混沌运动的滑模变结构控制[J]. 物理学报, 2009, 58(11): 7552-7557.
YANG G L, LI H G.Sliding mode variable-structure control of chaos in direct-driven permanent magnet synchronous generators for wind turbines[J]. Acta physica sinica, 2009, 58(11): 7552-7557.
[10] YANG L, HUANG T M, DENG L, et al.Adaptive sliding mode control of chaotic motion in direct-drive permanent magnet synchronous for wind turbines[J]. Acta microscopica, 2020, 29(2): 658-665.
[11] 王磊, 李颖晖, 逯国亮, 等. 直驱式永磁同步发电机混沌运动跟踪控制器设计[J]. 电力自动化设备, 2011, 31(6): 45-49.
WANG L, LI Y H, LU G L, et al.Tracking controller of D-PMSG chaos motion[J]. Electric power automation equipment, 2011, 31(6): 45-49.
[12] HU J, QIU Y, LU H.Adaptive robust nonlinear feedback control of chaos in PMSM systems with modeling uncertainty[J]. Applied mathematical modelling, 2016, 40(19-20): 8265-8275.
[13] 任丽娜, 刘福才, 焦晓红, 等. 基于Hamilton 模型的永磁同步风力发电系统中混沌运动的H控制[J]. 物理学报, 2012, 61(6): 77-82.
REN L N, LIU F C, JIAO X H, et al.Hamilton model-based H control of chaos in permanent magnet synchronous generators for wind power systems[J]. Acta energiae solaris sinica, 2012, 61(6): 77-82.
[14] MONJE C A, CHEN Y Q, VINAGRE B M, et al.Fractional-order systems and controls: fundaments and applications[M]. London: Springer-Verlag, 2010.
[15] BORAH M, ROY B K.Dynamics of the fractional-order chaotic PMSG, its stabilization using predictive control and circuit validation[J]. IET electric power applications, 2017, 11(5): 707-716.
[16] KRENER A J.Approximate linearization by state feedback and coordinate change[J]. Systems & control letters, 1984, 5(3): 181-185.
[17] BAUMANN W, RUGH W.Feedback control of nonlinear systems by extended linearization[J]. IEEE transactions on automatic control, 1986, 31(1): 40-46.
[18] TAKAGI T, SUGENO M.Fuzzy identification of systems and its applications to modeling and control[J]. IEEE transactions on systems, man and cybernetics, 1985, 15(1): 116-132.
[19] SUBRAMANIYAM R, JOO Y H.Memory-based ISMC design of DFIG-based wind turbine model via T-S fuzzy approach[J]. IET control theory & applications, 2021, 15: 348-359.
[20] KIAMINI S, JALILVAND A, MOBAYEN S.LMI-based robust control of floating tension-leg platforms with uncertainties and time-delays in offshore wind turbines via T-S fuzzy approach[J]. Ocean engineering, 2018, 154: 367-374.
[21] BEYAOUI M, TOUNSI M, ABBOUDI K, et al.Dynamic behaviour of a wind turbine gear system with uncertainties[J]. Comptes rendus mecanique, 2016, 344(6): 375-387.
[22] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步[J]. 物理学报, 2011, 60(7): 119-126.
YU Y, MI Z Q, LIU X J.Analysis of chaos in doubly fed induction generator and sliding mode control of chaos synchronization[J]. Acta physica sinica, 2011, 60(7): 119-126.
[23] 曾喆昭, 刘峰. 直驱型永磁同步风力发电机混沌运动的非线性比例控制[J]. 电力科学与技术学报, 2014, 29(2): 30-36.
ZENG Z Z, LIU F.Nonlinear proportional control of chaotic property in direct-drive permanent magnet synchronous generators for wind turbines[J]. Journal of electric power science and technology, 2014, 29(2): 30-36.
[24] KWAKERNAAK H.Robust control and H-optimization tutorial paper[J]. Automatica, 1993, 29(2): 255-273.
[25] KARIMI M.Further results on robust H control design for uncertain time-delay systems with actuator delay: application to PMSG machine[J]. Systems science & control engineering, 2018, 6(1): 510-517.
[26] CHEIKH R, MENACER A, CHRIFI-ALAOUI L, et al.Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Frontiers in energy, 2020, 14(1): 180-191.
[27] TIDJANI N, GUESSOUM A.Augmented robust T-S fuzzy control based PMSG wind turbine improved with Hperformance[J]. International journal of power electronics and drive system, 2021, 12(1): 585-596.
[28] KHETTAB K, BENSAFIA Y, BOUROUBA B, et al.Enhanced fractional order indirect fuzzy adaptive synchronization of uncertain fractional chaotic systems based on the variable structure control: robust H design approach[J]. Mathematical techniques of fractional order systems, 2018: 597-624.
[29] 薛定宇. 分数阶微积分学分数阶控制[M]. 北京: 科学出版社, 2018.
XUE D Y.Fractional calculus and fractional-order control[M]. Beijing: Science Press, 2018.
[30] 宋晓娜. 分数阶混沌系统的控制与同步[M]. 北京: 科学出版社, 2018.
SONG X N.Control and synchronization of fractional order chaotic systems[M]. Beijing: Science Press, 2018.
[31] HU J, LIU L, MA D W, et al.Adaptive nonlinear feedback control of chaos in permanent-magnet synchronous motor system with parametric uncertainty[J]. Journal of mechanical engineering science, 2015, 229(12): 2314-2323.
[32] LI Y, CHEN Y Q, PODLUBNY L.Mittag-Leffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009, 45(8): 1965-1969.
[33] ZHANG S, YU Y, YU J.LMI conditions for global stability of fractional-order neural networks[J]. IEEE transactions on neural networks and learning systems, 2017, 28(10): 2423-2433.
[34] BOYD S, EL G L, FERON E, et al.Linear matrix inequalities in system and control theory[J]. Proceedings of the IEEE, 1998, 86(12): 2473-2474.
[35] PODLUBNY I.Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. New York: Academic Press, 1998.

基金

国家自然科学基金重点项目(51907128)

PDF(2698 KB)

Accesses

Citation

Detail

段落导航
相关文章

/