将永磁悬浮支撑与流致振动潮流能转换装置相结合,探索永磁悬浮支撑结构作为弹簧在流致振动潮流能发电领域的应用可行性。为了对比永磁弹簧与金属弹簧所提供恢复力对刚性圆柱振子流致振动的影响,通过ANSYS Maxwell软件计算得到永磁弹簧的磁力,拟合出永磁弹簧的弹性恢复力曲线方程,将弹性恢复力曲线方程代入Star-CCM+计算出刚性圆柱振子在不同流速下的幅频特性,然后将计算结果与金属弹簧系统进行比较。结果显示永磁弹簧支撑振子流致振动幅频特性与金属弹簧的相似,在上端分支能达到最大振幅比,频率随着流速增加总体呈增加趋势。但在计算流速区间内,永磁弹簧支撑振子的振幅比与频率都比金属弹簧支撑振子大,振动性能更优。
Abstract
Combining permanent magnetic suspension support with flow-induced vibration tidal current energy conversion device, the application feasibility of a permanent magnetic suspension support structure as permanent magnetic spring in the field of flow-induced vibration power generation is explored. In order to compare the influence of the restoring force provided by the permanent magnet spring and the metal spring on the flow-induced vibration of the rigid cylindrical oscillator, the magnetic force of the permanent magnet spring is calculated by ANSYS Maxwell software, and the elastic restoring force curve equation of the permanent magnet spring is fitted. The amplitude-frequency characteristics of rigid cylindrical oscillators at different flow rates are calculated by substituting the elastic restoring force curve equation into Star-CCM+, and then the calculated results are compared with the metal spring system. The results show that the flow-induced vibration amplitude-frequency characteristics of the permanent magnet spring support oscillator are similar to those of the metal spring, the upper branch can reach the maximum amplitude ratio, and the frequency increases with the increase of the flow velocity. However, in the calculated flow velocity range, the amplitude ratio and frequency of the permanent magnet spring support oscillator are larger than those of the metal spring-supported oscillator, and the vibration performance is better.
关键词
潮流能 /
永磁弹簧 /
流致振动 /
恢复力 /
幅频特性
Key words
tidal current energy /
permanent magnetic spring /
flow-induced vibration /
restoring force /
amplitude-frequency characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 白旭, 乐智斌, 张焱飞. 质量比对圆柱体流致振动能量捕获效率的影响[J]. 太阳能学报, 2018, 39(12): 3325-3330.
BAI X, LE Z B, ZHANG Y F.Effect of mass ration on energy capture efficiency of vibration induced by cylinder flow[J]. Acta energiae solaris sinica, 2018, 39(12): 3325-3330.
[2] 谭俊哲, 王保振, 王树杰, 等. 直线发电机在流致振动潮流能发电装置中的应用研究[J]. 太阳能学报, 2020, 41(9): 9-14.
TAN J Z, WANG B Z, WANG S J, et al.Study on linear generator applied in tidal energy converter based on flow-induced motion[J]. Acta energiae solaris sinica, 2020, 41(9): 9-14.
[3] BERNITSAS M, RAGHAVAN K, BEN S Y, et al.VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of offshore mechanics and arctic engineering, 2008, 130(4): 10-24.
[4] 孙飞. 涡激振动潮流能转换装置获能原理研究[D]. 青岛: 中国海洋大学, 2013.
SUN F.Study on mechanism of VIV in tidal current energy conversion device[D]. Qingdao: Ocean University of China, 2013.
[5] 罗竹梅. 海流能发电涡激振动驱动的水动力特性及能量获取研究[D]. 昆明: 昆明理工大学, 2016.
LUO Z M.Research on hydrodynamic characteristics and harvesting energy in ocean current power generation drived by VIV[D]. Kunming: Kunming University of Science and Technology, 2016.
[6] 练继建, 燕翔, 刘昉, 等. 流致振动发电的效率[J]. 哈尔滨工程大学学报, 2017, 38(10): 1545-1553.
LIAN J J, YAN X, LIU F, et al.Power generating efficiency of flow-induced vibration[J]. Journal of Harbin Engineering University, 2017, 38(10): 1545-1553.
[7] BAI X, LE Z B, QIN W.Effect of traveling waves on a long slender cylinder in vortex-induced vibration with two degrees of freedom[J]. Computers and fluids, 2019, 193: 104270.
[8] BAI X, HAN C Y, CHEN Y.Parametric analysis of an energy-harvesting device for a riser based on vortex-induced vibrations[J]. Energies, 2020, 13: 414.
[9] 白旭, 罗小芳, 乐智斌. 一种随振幅转换的磁边界涡激振动发电装置: CN109378934B[P].2020-08-25.
BAI X, LUO X F, LE Z B. A magnetic boundary vortex vibration power generation device converted with amplitude: CN109378934B[P].2020-08-25.
[10] MACKOWSKI A W, WILLIAMSON C H K. An experimental investigation of vortex-induced vibration with nonlinear restoring forces[J]. Physics of fluids, 2013, 25: 087101.
[11] MANN B P, SIMS N D.Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of sound and vibration, 2009, 319: 515-530.
[12] MASOUMI M, WANG Y.Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: modeling, simulation and experiment[J]. Journal of sound and vibration, 2016, 381: 192-205.
[13] LIU L, YUAN F G.Nonlinear vibration energy harvester using diamagnetic levitation[J]. Applied physics letters, 2011, 98: 203507.
[14] YANG X G, ZHANG B, LI J G, et al.Model and experimental research on an electromagnetic vibration-powered generator with annular permanent magnet spring[J]. IEEE transactions on applied superconductivity, 2012, 22(3): 5201504.
[15] 金俊杰. 节能型永磁悬浮传送系统的实现机理与特性研究[D]. 沈阳: 沈阳工业大学, 2018.
JIN J J.Study on mechanism and characteristics of the energy-saving permanent magnetic suspension transfer system[D]. Shenyang: Shenyang University of Technology, 2018.
[16] 王仲勋, 郭永存, 胡坤. 永磁悬浮带式输送机悬浮力特性分析[J]. 煤炭技术, 2019, 38(5): 133-135.
WANG Z X, GUO Y C, HU K.Analysis of suspension force characteristics of permanent magnetic suspension belt conveyor[J]. Coal technology, 2019, 38(5): 133-135.
[17] LYU Y F,SUN L P, BERNITSAS M M, et al.A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations[J]. Renewable and sustainable energy reviews, 2021, 111388: 6-29.
[18] 何鸿涛. 圆柱绕流及其控制的数值模拟研究[D]. 北京: 北京交通大学, 2009.
HE H T.Numerical simulation to characteristics and control of flow around a circular cylinder[D]. Beijing: Beijing Jiaotong University, 2009.
[19] KRAVCHENKO A G, MOIN P.Numerical studies of flow over a circular cylinder at Re = 3900[J]. Physics of fluids, 2000, 12(2): 441-453.
[20] 周超杰, 洪亮, 张周康, 等. 重叠网格在多浮体结构CFD中的应用[J]. 兵器装备工程学报, 2018, 39( 11 ): 199-204.
ZHOU C J, HONG L,ZHANG Z K, et al.Application of overlapping grids in CFD of multi-floating structures[J]. Journal of ordnance and equipment engineering, 2018, 39(11): 199-204.
[21] 贾晓荷. 单圆柱及双圆柱绕流的大涡模拟[D]. 上海: 上海交通大学, 2008.
JIA X H.Large eddy simulation of flow around one and two circular cylinders[D]. Shanghai: Shanghai Jiao Tong University, 2008.
基金
江苏省自然科学基金面上项目(BK20211342); 国家自然科学基金面上项目(42276225); 江苏省“六大人才高峰”项目(2018-KTHY-033)