非共沸工质双压冷凝热泵热水器性能研究

代宝民, 刘笑, 刘圣春, 冯一宁, 刘佳, 肖鹏

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 344-352.

PDF(2391 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2391 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 344-352. DOI: 10.19912/j.0254-0096.tynxb.2021-1027

非共沸工质双压冷凝热泵热水器性能研究

  • 代宝民1, 刘笑1, 刘圣春1, 冯一宁1, 刘佳1, 肖鹏2
作者信息 +

PERFORMANCE OF DUAL-PRESSUR CONDENSATION HEAT PUMP WATER HEATER USING NON-ZEOTROPIC WORKING MEDIUM

  • Dai Baomin1, Liu Xiao1, Liu Shengchun1, Feng Yining1, Liu Jia1, Xiao Peng2
Author information +
文章历史 +

摘要

提出一种双压冷凝梯级加热热泵热水器(DPS)系统新构型,采用碳氢非共沸工质作为制冷剂,可实现热水的连续梯级低㶲加热,采用黄金分割法对系统热力性能进行优化。结果表明,非共沸工质的DPS系统的热力学性能优于纯质的DPS系统和单级热泵系统,双压冷凝系统在最优中间水温时取得最大COP。名义工况下,采用R600/R601a(40/60)的DPS系统COP高达5.17,相对采用纯质的DPS系统和单级系统分别提高9.45%和14.25%。采用温度滑移合理的非共沸工质可显著减少㶲损,改善冷凝器的热匹配特性,系统㶲效率最高提升11.70%,名义工况下推荐R600/R601a(40/60)作为工质对。

Abstract

A new configuration of dual-pressure condensation heat pump water heater system (DPS) is proposed, and hydrocarbon (HC) zeotropic working medium is used as refrigerant. Therefore, the water is heated continously step by step with low exergy destruction in the condenser. Then, the thermal performance of the system is optimized by golden section method. The results indicate that the thermodynamic with pure refrigerant. The dual-pressure condensation system obtains the maximum coefficient of performance (COP) at the optimal intermediate water temperature. Under the normal working condition of the heat pump water heater, the COP of DPS system using R600/R601a(40/60) is as high as 5.17, which is 9.45% and 14.25% higher than that of DPS system and the single-stage system with pure refrigerant, respectively. When non-zeotropic working medium with suitable temperature glide is used, the exergy destruction can be significantly reduced to improve thermal matching of the condenser, the exergy efficiency of the overall system is enhanced by up to 11.70%. Consequently, it is recommended that R600/R601a(40/60) is the best candidate for water heater heat pump under normal working condition.

关键词

制冷剂 / 热泵系统 / 碳氢化合物 / 能效 / 温度匹配

Key words

refrigerant / heat pump system / hydrocarbon / energy efficiency / temperature matching

引用本文

导出引用
代宝民, 刘笑, 刘圣春, 冯一宁, 刘佳, 肖鹏. 非共沸工质双压冷凝热泵热水器性能研究[J]. 太阳能学报. 2023, 44(2): 344-352 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1027
Dai Baomin, Liu Xiao, Liu Shengchun, Feng Yining, Liu Jia, Xiao Peng. PERFORMANCE OF DUAL-PRESSUR CONDENSATION HEAT PUMP WATER HEATER USING NON-ZEOTROPIC WORKING MEDIUM[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 344-352 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1027
中图分类号: TK121   

参考文献

[1] 杜祥琬,冯丽妃. 碳达峰与碳中和引领能源革命[N]. 中国科学报, 2020-12-22(001).
DU X W, FENG L F. Carbon peaking and carbon neutrality are leading the energy revolution[N]. Chinese science daily, 2020-12-22(001).
[2] WILLEM H, LIN Y, LEKOV A.Review of energy efficiency and system performance of residential heat pump water daily[J]. Energy and buildings, 2017, 143:191-201.
[3] HEREDIA-ARICAPA Y, BELMAN-FLORES J M, MOTA-BABILONI A, et al. Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A[J]. International journal of refrigeration, 2020, 111: 113-123.
[4] 代宝民, 李敏霞, 吕佳桐, 等. 超临界CO2/R41小通道内的换热特性[J]. 化工学报, 2015, 66(3): 924-931.
DAI B M, LI M X, LYU J T, et al.Heat transfer characteristics of supercritical CO2/R41 flowing in mini-channel[J]. CIESC journal, 2015, 66(3): 924-931.
[5] PUROHIT P, BORGFORD-PARNELL N, KLIMONT Z, et al.Achieving Paris climate goals calls for increasing ambition of the Kigali amendment[J]. Nature climate change, 2022, 12(4): 339-342.
[6] HARBY K.Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and sustainable energy reviews, 2017, 73: 1247-1264.
[7] HEPBASLI A, KALINCI Y.A review of heat pump water heating systems[J]. Renewable and sustainable energy reviews, 2009, 13(6-7): 1211-1229.
[8] IEC 60335-2-89:2019, Household and similar electrical appliances-Safety -Part 2-89: Particular requirements for commercial refrigerating appliances and ice-makers with an incorporated or remote refrigerant unit or motor-compressor[S].
[9] ZHANG J F, QIN Y, WANG C C.Review on CO2 heat pump water heater for residential use in Japan[J]. Renewable and sustainable energy reviews, 2015, 50:1383-1391.
[10] 许文华, 李惟毅, 郭强. 考虑环境影响的CO2/低GWP混合工质热泵热水器工质优选[J].太阳能学报,2018, 39(1): 84-89.
XU W H, LI W Y, GUO Q.Working fluids selecting of CO2 blends with low-GWP(global warming potential) heat pump system considering impact of environment[J]. Acta energiae solaris sinica, 2018, 39(1): 84-89.
[11] 吴薇, 王玲珑, 张甜湉. 一体化太阳能热泵热水器蓄能特性对比研究[J]. 太阳能学报, 2015, 36(9): 2211-2216.
WU W, WANG L L, ZHANG T T.Comparative study on storage characteristics of the integrated solar heat pump water heater[J]. Acta energiae solaris sinica, 2015, 36(9): 2211-2216.
[12] DAI B M, LIU X, LIU S C, et al.Dual-pressure condensation high temperature heat pump system for waste heat recovery: energetic and exergetic assessment[J]. Energy conversion and management, 2020, 218: 112997.
[13] BAMIGBETAN O, EIKEVIK T M, NEKSÄ P, et al.Experimental investigation of a prototype R-600 compressor for high temperature heat pump[J]. Energy, 2019, 169: 730-738.
[14] BAMIGBETAN O, EIKEVIK T M, NEKSÄ P, et al.The development of a hydrocarbon high temperature heat pump for waste heat recovery[J]. Energy, 2019, 173: 1141-1153.
[15] NAWAZ K, SHEN B, ELATAR A, et al.R290 (propane) and R600a(isobutane) as natural refrigerants for residential heat pump water heaters[J]. Applied thermal engineering, 2017, 127: 870-883.
[16] GB/T 23137—2020, 家用和类似用途热泵热水器[S].
GB/T 23137—2020, Heat pump water heater for household and similar application[S].
[17] DAI B M, DANG C B, LI M X, et al.Thermodynamic performance assessment of carbon dioxide blends with low-global warming potential(GWP) working fluids for a heat pump water heater[J]. International journal of refrigeration, 2015, 56: 1-14.
[18] United Nations Environment Programme (UNEP). 2010 assessment report of the technology and economic assessment panel: montreal protocol on substances that deplete the ozone layer[R]. Nairobi, Kenya, 2010.
[19] 李姗姗, 李舒宏, 张小松. 复合热源CO2热泵热水器的模拟分析[J]. 化工学报, 2014, 65(增刊2): 256-264.
LI S S, LI S H, ZHANG X S.Simulation of CO2 heat pump water heater with hybrid heat sources[J]. CIESC journal, 2014, 65(S2): 256-264.
[20] CALM J, HOURRAHAN G.Physical, safety, and environmental data for current and alternative refrigerants[C]//Proceedings of 23rd International Congress of Refrigeration, Prague, Czech Republic, 2011.
[21] GALINDO J, RUIZ S, DOLZ V, et al.Advanced exergy analysis for a bottoming organic Rankine cycle coupled to an internal combustion engine[J]. Energy conversion and management, 2016, 126: 217-227.
[22] ZÜHLSDORF B, JENSEN J K, CIGNITTI S, et al. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides[J]. Energy, 2018, 153: 650-660.

基金

国家自然科学基金(51806151); 天津市自然科学(20JCQNJC00600); 大学生创新创业训练项目(202110069067)

PDF(2391 KB)

Accesses

Citation

Detail

段落导航
相关文章

/