为解决大规模风电并网带来的系统频率稳定性降低问题,风电机组通过虚拟惯量控制可为系统提供短期频率支撑,然而惯性响应期间风电机组转速收敛缓慢,导致一部分转子动能被无故浪费;转速恢复阶段的有功突变易造成频率二次跌落。为此,提出基于转矩极限的改进风电机组虚拟惯量控制策略,实现在释放较少动能的前提下提供与传统策略相同的频率响应服务;并在频率步入准稳态时,借助时变功率函数开始转速恢复,实现转速快速恢复的同时缓解二次频率跌落。基于EMTP-RV仿真软件搭建包含风电场的电力系统模型,验证了所提策略的有效性。
Abstract
To solve the issues of reduction of the system frequency stability caused by large-scale wind power integrations, the short-term frequency support can be obtained for the wind turbine generators by using virtual inertia control. However, when performing virtual inertia control, the slow rotor speed convergence results in the unnecessary waste of the rotor kinetic energy. The sudden change of active power during the rotor speed recovery stage is prone to cause the second frequency drop (SFD). To this end, this paper proposes an improved virtual inertia control strategy of wind turbine generators based on torque limit. The proposed strategy can preserve the frequency nadir with the less released rotor energy; when the system frequency reaches to the quasi-steady state, the rotor speed recovery is started with time-varying power function so as to realize the rapid speed recovery while alleviating the SFD. The proposed virtual inertial control strategy is verified based on an electric power system model embed with a doubly-fed induction generator-based wind power plant using on EMTP-RV.
关键词
风力发电 /
频率响应 /
转子动能 /
二次频率跌落 /
转速恢复
Key words
wind power /
frequency response /
rotor kinetic energy /
second frequency drop /
speed recovery
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020,40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of newenergy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[2] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J]. 太阳能学报, 2020, 41(2): 101-109.
LI S L, QIN S Y, WANG R M, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Acta energiae solaris sinica, 2020, 41(2): 101-109.
[3] 段士伟, 杨修宇, 柴仁勇, 等. 大规模风电接入的灵活性资源优化配置方法[J]. 东北电力大学学报, 2020, 40(6): 45-51.
DUAN S W, YANG X Y, CHAI R Y,et al.Optional configuration method of flexibility resources of high-penetration renewable energy[J]. Journal of Northeast Dianli University, 2020, 40(6): 45-51.
[4] BAO W, DING L, LIU Z, et al.Analytically derived fixed termination time for stepwise inertial control of wind turbines—part Ⅰ: analytical derivation[J]. International journal of electrical power & energy systems, 2020, 121: 1-10.
[5] 朱博, 徐攀腾, 刘科, 等. 柔性直流与风电协同的受端系统频率调控方法[J]. 东北电力大学学报, 2021, 41(2): 86-93.
ZHU B, XU P T, LIU K, et al.Frequency control method for receiving end power system by DFIG and VSC-HVDC[J]. Journal of Northeast Dianli University, 2021, 41(2):86-93.
[6] 蔡葆锐, 杨蕾, 黄伟. 基于惯性/下垂控制的变速型风电机组频率协调控制策略[J]. 电力系统保护与控制, 2021, 49(15): 169-177.
CAI B R, YANG L, HUANG W.Frequency coordination control of a variable speed wind turbine based on inertia/droop control[J]. Power system protection and control, 2021, 49(15): 169-177.
[7] HU Y L, WU Y K.Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control[J]. IEEE transactions on industry applications, 2019, 55(3): 2300-2309.
[8] 边晓燕, 张菁娴, 丁炀, 等. 基于DFIG虚拟惯量的微电网双维自适应动态频率优化控制[J]. 高电压技术, 2020, 46(5): 1489-1498.
BIAN X Y, ZHANG J X, DING Y, et al.Double layer adaptive dynamic frequency optimization control of microgrid based on DFIG virtual inertia[J]. High voltage engineering, 2020, 46(5): 1489-1498.
[9] ULLAH N, THIRINGER T, KARLSSON D.Temporary primary frequency control support by variable speed wind turbines—potential and applications[J]. IEEE transactions on power systems, 2008, 23(2): 601-612.
[10] KANG M, MULJADI E, HUR K, et al.Stable adaptive inertial control of a doubly-fed induction generator[J]. IEEE transactions on smart grid, 2016, 7(6): 2971-2979.
[11] KANG M, KIM K, MULJADI E, et al.Frequency control support of a doubly-fed induction generator based on the torque limit[J]. IEEE transactions on power systems, 2016, 31(6): 4575-4583.
[12] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990.
ZHAO J J, LI M, HE X Q, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4990.
[13] 劳焕景, 张黎, 宋鹏程, 等. 一种考虑最优状态动态恢复的风电持续调频策略[J]. 电网技术, 2020, 44(12): 4504-4512.
LAO H J, ZHANG L, SONG P C, et al.Wind power sustained frequency regulation strategy with dynamic optimized state recovery behavior[J]. Power system technology, 2020, 44(12): 4504-4512.
[14] 李世春, 唐红艳, 刘道兵, 等. 含风电虚拟惯性响应的电力系统惯性时间常数计算[J]. 可再生能源, 2018, 36(10): 1486-1491.
LI S C, TANG H Y, LIU D B, et al.Calculation of equivalent inertia time constant of power system with virtual inertial response of wind power[J]. Renewable energy resources, 2018, 36(10): 1486-1491.
[15] MIAO L, WEN J, XIE H, et al.Coordinate control strategy of wind turbine generator and energy storage equipment for frequency support[J]. IEEE transactions on industry applications, 2015, 51(4): 2737-2742.
基金
国家自然科学基金(51907106); 江苏省高校自然科学基金(20KJB470026)