高原高寒地区光伏组件背板冷却对输出功率影响的实验研究

赵斌, 谭恒, 何锁盈, 曲宏伟, 白珍, 周腊吾

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 122-129.

PDF(2038 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2038 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 122-129. DOI: 10.19912/j.0254-0096.tynxb.2021-1034

高原高寒地区光伏组件背板冷却对输出功率影响的实验研究

  • 赵斌1, 谭恒1, 何锁盈2, 曲宏伟3, 白珍4, 周腊吾1
作者信息 +

EXPERIMENTAL STUDY ON INFLUENCE OF BACKPLANE COOLING ON POWER OUTPUT OF PHOTOVOLTAIC MODULES IN FRIGID PLATEAU REGION

  • Zhao Bin1, Tan Heng1, He Suoying2, Qu Hongwei3, Bai Zhen4, Zhou Lawu1
Author information +
文章历史 +

摘要

针对光伏组件表面温度影响光伏电站出力的技术难题,以2行4列的光伏阵列为例,在拉萨搭建光伏阵列输出功率实验测试平台,采用液冷方式在背板铺设冷却循环管道构建背板冷却系统,并基于冷却系统的连续运行(实验Ⅰ)、先停后启(实验Ⅱ)、先启后停(实验Ⅲ)3种运行工况,分别进行光伏组件有无背板冷却的对比实验,探究高原高寒地区组件表面温度对光伏阵列输出功率的影响规律。研究表明:采用背板冷却技术降低光伏组件的表面温度,可有效提升光伏阵列的输出功率,在实验Ⅰ、Ⅱ、Ⅲ中光伏阵列输出功率分别提升了1.4%、1.3%、1.0%;光伏组件采用背板冷却技术时,冷却介质循环泵耗功高于光伏阵列提升的输出功率,但在高原高寒地区可回收利用冷却介质吸热量,加热生活用水,可使采用背板冷却的光伏阵列综合效益提高。

Abstract

Aiming at the technical problems that the surface temperature of photovoltaic modules affects the output power of photovoltaic station, an experimental test platform for the output power of photovoltaic arrays was set up in Lhasa with two rows and four columns of photovoltaic arrays, and the backplane cooling system was constructed by laying liquid-cooled circulating tubes on the backplane. Through three working condition of the cooling system continuous operation (experiment I), stopped before starting(experiment II), started before stopping(experiment III), the comparative experiments were carried out for photovoltaic modules with or without backplane cooling to explore the influence of the surface temperature of modules on the photovoltaic array output power in frigid plateau. The results show that backplane cooling system can reduce the surface temperature of photovoltaic modules and increase the photovoltaic array output power effectively. In experiment I, II and III, the output power of photovoltaic array increased by 1.4%, 1.3% and 1.0% respectively. By adopting the backplane cooling technology, the additional consumption power of coolant circulation pump is higher than the output power boosted by backplane cooling, but the heat absorbed by the cooling medium can be recycled in frigid plateau region, such as heating domestic water, which can make the comprehensive benefit of backplane cooling system better.

关键词

光伏组件 / 表面温度 / 输出功率 / 背板冷却 / 高原高寒

Key words

photovoltaic modules / surface temperature / output power / backplane cooling / frigid plateau

引用本文

导出引用
赵斌, 谭恒, 何锁盈, 曲宏伟, 白珍, 周腊吾. 高原高寒地区光伏组件背板冷却对输出功率影响的实验研究[J]. 太阳能学报. 2022, 43(8): 122-129 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1034
Zhao Bin, Tan Heng, He Suoying, Qu Hongwei, Bai Zhen, Zhou Lawu. EXPERIMENTAL STUDY ON INFLUENCE OF BACKPLANE COOLING ON POWER OUTPUT OF PHOTOVOLTAIC MODULES IN FRIGID PLATEAU REGION[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 122-129 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1034
中图分类号: TM615   

参考文献

[1] 赵良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究[J]. 中国电力, 2016, 49(1): 178-184.
ZHAO L, BAI J H, XIN S X, et al.Study on development path of renewable energy in China[J]. Electric power, 2016, 49(1): 178-184.
[2] 陈剑波, 于海照, 姚晶珊. 表面水降温太阳能光伏组件的应用特性研究[J]. 太阳能学报, 2016, 37(7): 1768-1773.
CHEN J B, YU H Z, YAO J S.Research on application characteristics of surface water cooling solar photovoltaic modules[J]. Acta energiae solaris sinica, 2016, 37(7): 1768-1773.
[3] QU H W, LI X C.Temperature dependency of the fill factor in PV modules between 6 and 40 ℃[J]. Journal of mechanical science and technology, 2019, 33(4): 1981-1986.
[4] 曲宏伟, 王靖雯. 积灰对光伏板输出特性影响理论和试验研究[J]. 太阳能学报, 2018, 39(8): 2335-2340.
QU H W, WANG J W.Theory and experimental research of effect of dust deposition on output characteristics of PV module[J]. Acta energiae solaris sinica, 2018, 39(8): 2335-2340.
[5] SARGUNANATHAN S, ELANGO A, MOHIDEEN S T.Performance enhancement of solar photovoltaic cells using effective cooling methods: a review[J]. Renewable and sustainable energy reviews, 2016, 64: 382-393.
[6] CHEN H B, CHEN X L, LI S Z, et al.Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation[J]. International journal of smart grid and clean energy, 2014, 3(4): 374-379.
[7] FATIH S, FATIH B, HAKAN F O.Experimental analysis and dynamic modeling of a photovoltaic module with porous fins[J]. Renewable energy, 2018, 125: 193-205.
[8] 郭玮, 刘杰. 关于光伏电池最佳风冷方案的模拟研究[J]. 可再生能源, 2020, 38(9): 1163-1168.
GUO W, LIU J.Simulation study on optimal air-cooling scheme for photovoltaic cells[J]. Renewable energy resources, 2020, 38(9): 1163-1168.
[9] 王霜, 罗会龙, 王浩. 主、被动冷却的微槽道热管PV/T组件光电/光热性能对比分析[J]. 化工学报, 2018, 69(6): 2432-2438.
WANG S, LUO H L, WANG H.Comparative analysis of photoelectric/photothermal performance for active and passive cooled heat pipe with micro grooves PV/T components[J]. CIESC journal, 2018, 69(6): 2432-2438.
[10] 逯富伟, 王华军, 郭毅, 等. 基于地埋管辅助冷却的太阳能光伏系统性能研究[J]. 太阳能学报, 2019, 40(6): 1626-1631.
LU F W, WANG H J, GUO Y, et al.Operation performance of a solar photovoltaic system using assisted cooling by geothermal heat exchangers[J]. Acta energiae solaris sinica, 2019, 40(6): 1626-1631.
[11] 黄惠兰, 刘爽, 李刚, 等. 冷却剂流量对聚光型太阳能光伏系统效率的影响[J]. 热能动力工程, 2017, 32(7): 116-120,143.
HUANG H L, LIU S, LI G, et al.The influence of coolant flow on the efficiency of concentrated solar photovoltaic system[J]. Journal of engineering for thermal energy and power, 2017, 32(7): 116-120,143.
[12] 孙勇, 王一平, 魏世超, 等. 电热冷联产光伏辐射板集热集冷性能优化[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(8): 823-829.
SUN Y, WANG Y P, WEI S C, et al.Heating and cooling performance optimization of power,heating and cooling poly-generation photovoltaic radiant panel[J]. Journal of Tianjin University(science and technology), 2016, 49(8): 823-829.
[13] SAXENA A, DESHMUKH S, NIRALI S, et al.Laboratory based experimental investigation of photovoltaic(PV) thermo-control with water and its proposed real-time implementation[J]. Renewable energy, 2018, 115: 128-138.
[14] TINA G M, ROSA-CLOT M, ROSA-CLOT P, et al.Optical and thermal behavior of submerged photovoltaic solar panel: SP2[J]. Energy, 2012, 39(1): 17-26.
[15] ALI H A, Al W, SOPLAN K, et al.Evaluation of the nanofluid and nano-PCM based photovoltaic thermal(PVT) system: an experimental study[J]. Energy conversion and management, 2017, 151: 693-708.
[16] 杨挺, 夏云峰, 张敏, 等. 太阳电池表面温度对发电效率的影响研究[J]. 电源技术, 2019, 43(2): 283-285,337.
YANG T, XIA Y F, ZHANG M, et al.Effect of solar cell surface temperature on its generating efficiency[J]. Chinese journal of power sources, 2019, 43(2): 283-285,337.
[17] 秦红, 沈辉, 张仁元, 等. 蓄冷降温式太阳电池组件的实验研究[J]. 太阳能学报, 2010, 31(4): 447-453.
QIN H, SHEN H, ZHANG R Y, et al.Study on solar PV module with cool-storage mode[J]. Acta energiae solaris sinica, 2010, 31(4): 447-453.
[18] 张鹏, 周碧英. 光伏电池精确工程模型及输出特性研究[J]. 电子测量与仪器学报, 2016, 30(1): 151-158.
ZHANG P, ZHOU B Y.Research on accurate engineering model and output characteristics of photovoltaic cell[J]. Journal of electronic measurement and instrumentation, 2016, 30(1): 151-158.
[19] 陈艳, 张科智, 鲁长琴. 固定式光伏方阵最佳倾角的计算与分析[J]. 太阳能学报, 2019, 40(6): 1567-1575.
CHEN Y, ZHANG K Z, LU C Q.Calculation and analysis of optimum tilted angle for fixed photovoltaic array[J]. Acta energiae solaris sinica, 2019, 40(6): 1567-1575.
[20] 贺云龙, 代彦军. 基于PV/T的太阳能热泵热水系统实验研究[J]. 太阳能学报, 2020, 41(12): 83-89.
HE Y L, DAI Y J.Experimental study of solar heat pump hot water system based on PV/T module[J]. Acta energiae solaris sinica, 2020, 41(12): 83-89.

基金

西藏自治区自然科学基金重点项目(XZ2019ZRG-194); 西藏自治区重大科技专项(XZ201901-GA-09)

PDF(2038 KB)

Accesses

Citation

Detail

段落导航
相关文章

/