计及变流器影响的直驱式永磁同步发电机二阶自抗扰控制

祝可可, 阮琳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 87-92.

PDF(2737 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2737 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 87-92. DOI: 10.19912/j.0254-0096.tynxb.2021-1035

计及变流器影响的直驱式永磁同步发电机二阶自抗扰控制

  • 祝可可1,2, 阮琳1,2
作者信息 +

SECOND-ORDER ACTIVE DISTURBANCE REJECTION CONTROL OF DIRECT-DRIVEN PERMANENT MAGNET SYNCHRONOUS GENERATORS CONSIDERING INFLUENCE OF CONVERTER

  • Zhu Keke1,2, Ruan Lin1,2
Author information +
文章历史 +

摘要

研究基于新型自抗扰技术的直驱式永磁同步发电机电气控制系统。考虑变流器对控制系统输出电压的影响,建立发电机组的数学模型,以此为基础设计二阶自抗扰控制器,对设计的扩张状态观测器和控制器的收敛性进行分析并给出控制参数配置方法。通过仿真对所提控制系统的可行性及控制性能进行定量分析,结果表明,该控制系统能够快速稳定的控制发电机组的运行过程,且相比传统的矢量控制及一阶自抗扰控制具有更好的动态性能及鲁棒性能。

Abstract

An electric control system of direct-drive permanent magnet synchronous generator based on new active disturbance rejection technology is studied. Considering the influence of the converter on the output voltage of the control system, a mathematical model of the generator set is established, and based on this, a second-order active disturbance rejection controller (ADRC) is designed. The proposed extended state observer and the convergence of the controller are analyzed, and the control parameter configuration method is given. The feasibility and control performance of the proposed control system are quantitatively analyzed by simulation. The results show that the proposed control system can control the operation process of the generator set quickly and stably, and has better dynamic performance and robust performance than the traditional vector control and first-order ADRC.

关键词

风力发电 / 控制策略 / 鲁棒性 / 变流器 / 二阶自抗扰控制器

Key words

wind power / control strategy / robustness / converter / second-order active disturbance rejection controller

引用本文

导出引用
祝可可, 阮琳. 计及变流器影响的直驱式永磁同步发电机二阶自抗扰控制[J]. 太阳能学报. 2023, 44(2): 87-92 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1035
Zhu Keke, Ruan Lin. SECOND-ORDER ACTIVE DISTURBANCE REJECTION CONTROL OF DIRECT-DRIVEN PERMANENT MAGNET SYNCHRONOUS GENERATORS CONSIDERING INFLUENCE OF CONVERTER[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 87-92 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1035
中图分类号: O325    TK79   

参考文献

[1] YARAMASU V, WU B C, SEN P, et al.High-power wind energy conversion systems: state-of-the-art and emerging technologies[J]. Proceedings of the IEEE, 2015, 103(5): 740-788.
[2] 方云熠, 曾喆昭, 王可煜, 等. 永磁直驱风力发电系统最大功率跟踪改进型积分滑模控制[J]. 电力系统保护与控制, 2019, 47(5): 77-83.
FANG Y Y, ZENG Z Z, WANG K Y, et al.Improved integral sliding mode control for maximum power tracking of permanent magnet direct drive wind power generation system[J]. Power system protection and control, 2019, 47(5): 77-83.
[3] 朱斌. 自抗扰控制入门[M]. 北京: 北京航空航天出版社, 2017.
ZHU B.Introduction to active disturbance rejection control [M]. Beijing: Beijing Aerospace Press, 2017.
[4] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 151-160.
ZHU J Q, GE Q X, SUN P K, et al.Traction control strategy of high speed maglev train based on active disturbance rejection[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 151-160.
[5] 马燕峰, 霍亚欣, 李鑫, 等. 考虑时滞影响的双馈风电场广域附加阻尼控制器设计[J]. 电工技术学报, 2020, 35(1): 158-166.
MA Y F, HUO Y X, LI X, et al.Design of wide-area additional damping controller for doubly-fed wind farm considering the effect of time delay[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166.
[6] 高志强, 李松, 周雪松, 等. 线性自抗扰在光伏发电系统MPPT中的应用[J]. 电力系统保护与控制, 2018, 46(15): 52-59.
GAO Z Q, LI S, ZHOU X S, et al.Application of linear active disturbance rejection in photovoltaic power generation system MPPT[J]. Power system protection and control, 2018, 46(15): 52-59.
[7] 方云熠, 曾喆昭, 刘晴, 等. 永磁直驱风力发电系统最大功率跟踪非线性抗扰控制[J]. 电力系统保护与控制, 2019, 527(5): 153-159.
FANG Y Y, ZENG Z Z, LIU Q, et al.Nonlinear disturbance rejection control for maximum power tracking of permanent magnet direct drive wind power system[J]. Power system protection and control, 2019, 527(5): 153-159.
[8] 杜博超, 崔淑梅, 宋立伟, 等. 一种基于变频电流信号的IPMSM无位置传感器高频注入电流噪声抑制方法[J]. 电工技术学报, 2020, 35(18): 54-61.
DU B C, CUI S M, SONG L W, et al.A noise suppression method of IPMSM position sensorless high-frequency injecting current based on variable frequency current signal[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 54-61.
[9] LI S, CAO M, LI J, et al.Sensorless based active disturbance rejection control for a wind energy conversion system with permanent magnet synchronous generator[J]. IEEE access, 2019, 26(1): 663-674.
[10] 孙佃升, 章跃进. 自抗扰控制和高频信号注入的内嵌式永磁同步电机无位置传感器控制[J]. 控制理论与应用, 2017, 34(4): 508-514.
SUN D S, ZHANG Y J.Active disturbance rejection control and position sensorless control of embedded permanent magnet synchronous motor with high frequency signal injection[J]. Control theory & applications, 2017, 34(4): 508-514.
[11] 杜博超, 韩守亮, 张超, 等. 基于自抗扰控制器的内置式永磁同步电机无位置传感器控制[J]. 电工技术学报, 2017, 32(3): 105-112.
DU B C, HAN S L, ZHANG C, et al.Position sensorless control of built-in permanent magnet synchronous motor based on active disturbance rejection controller[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 105-112.
[12] 伍文俊, 蔡雨希, 兰雪梅. 三电平中点钳位型变换器线性自抗扰离散建模与稳定控制[J]. 电工技术学报, 2020, 35(增刊1): 43-54.
WU W J, CAI Y X, LAN X M.Discrete modeling of linear active disturbance rejection and stability control for three-level midpoint clamp converter[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 43-54.
[13] 袁东, 马晓军, 曾庆含, 等. 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30(12): 1630-1640.
YUAN D, MA X J, ZENG Q H, et al.Research on frequency band characteristics and parameter configuration of linear active disturbance rejection controller for second-order systems[J]. Control theory & applications, 2013, 30(12): 1630-1640.
[14] 金辉宇, 张瑞青, 王雷, 等. 线性自抗扰控制参数整定鲁棒性的根轨迹分析[J]. 控制理论与应用, 2018, 35(11): 105-110.
JIN H Y, ZHANG R Q, WANG L, et al.Root locus analysis of robustness of parameter tuning for linear active disturbance rejection control[J]. Control theory & applications, 2018, 35(11): 105-110.
[15] 纪历, 邵宜祥, 高苏杰, 等. 可变速抽水蓄能机组交流励磁系统自抗扰控制[J]. 电力系统自动化, 2017, 41(611): 168-173.
JI L, SHAO Y X, GAO S J, et al.Active disturbance rejection control of AC excitation system for variable speed pumped storage units[J]. Automation of electric power systems, 2017, 41(611): 168-173.
[16] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference, Denver, CO, USA, 2003: 4989-4996.

PDF(2737 KB)

Accesses

Citation

Detail

段落导航
相关文章

/