基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测

杨国清, 李建基, 王德意, 张凯, 刘菁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 381-390.

PDF(2347 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2347 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 381-390. DOI: 10.19912/j.0254-0096.tynxb.2021-1042

基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测

  • 杨国清1,2, 李建基1, 王德意1,2, 张凯1, 刘菁1
作者信息 +

SHORT-TERM PHOTOVOLTAIC POWER INTERVAL REDICTION BASED ON INFORMATION ENTROPY VARIABLE WEIGHT INTERVAL COMBINATION AND BOUNDARY APPROXIMATION

  • Yang Guoqing1,2, Li Jianji1, Wang Deyi1,2, Zhang Kai1, Liu Jing1
Author information +
文章历史 +

摘要

针对现有的区间预测在满足高覆盖率的同时区间宽度存在过宽的问题,提出一种基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测方法。首先,对历史天气数据特征进行特征重组,并基于套索交叉的递归特征消除(LassoCV-RFE)算法对重组后的特征进行筛选。然后,采用动态贝叶斯网络模型和基于卷积长短期记忆网络的改进分位数回归模型(CNN-LSTM-QH)分别预测光伏出力的置信区间,根据信息熵进行区间变权组合。最后,结合区间覆盖率和区间宽度指标,构建边界逼近函数和惩罚边界,对两个预测结果加权组合后的区间进行边界逼近。仿真结果表明:相比于一般的单一模型方法,所提方法能在95%、90%和85%的置信水平下分别减小21.86%、16.67%和14.93%的平均区间宽度,同时区间覆盖率也能满足对应的置信度要求。

Abstract

Aiming at the problem that the interval width is too wide while the existing interval prediction satisfies the high coverage rate, a short-term photovoltaic power interval prediction method was proposed based on the interval combination of information entropy variable weight and boundary approximation. Firstly, the features of historical weather data were reconstructed, and the reconstructed features were screened based on LASSOCV-RFE algorithm. Then, dynamic Bayesian network model and improved quantile regression model based on convolutional long and short-term memory network (CNN-LSTM-QH) were used to predict the confidence interval of photovoltaic output, and the interval variable weight combination was carried out according to the information entropy. Finally, combining with the interval coverage and interval width indexes, the boundary approximation function and penalty boundary were constructed, and the weighted combination of the two prediction results was used to approximate the boundary of the interval. Simulation results show that the proposed method can reduce the average interval widths of 21.86%, 16.67% and 14.93% respectively at 95%, 90% and 85% confidence levels, and the interval coverage also meets the corresponding confidence level requirements.

关键词

光伏功率 / 特征选取 / 自适应权重 / 组合预测 / 边界逼近 / 区间预测

Key words

photovoltaic power / feature selection / adaptive weight / combined prediction / boundary approximation / interval prediction

引用本文

导出引用
杨国清, 李建基, 王德意, 张凯, 刘菁. 基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测[J]. 太阳能学报. 2023, 44(2): 381-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1042
Yang Guoqing, Li Jianji, Wang Deyi, Zhang Kai, Liu Jing. SHORT-TERM PHOTOVOLTAIC POWER INTERVAL REDICTION BASED ON INFORMATION ENTROPY VARIABLE WEIGHT INTERVAL COMBINATION AND BOUNDARY APPROXIMATION[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 381-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1042
中图分类号: TM615   

参考文献

[1] 黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4): 1144-1157.
LI J H, LUO Y C, YANG S H, et al.Review of uncertainty forecasting methods for renewable energy power[J]. High voltage engineering, 2021, 47(4): 1144-1157.
[2] 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42(5): 252-259.
ZHANG N, GE L J.Photovoltaic system short-term power intervalhybrid forecasting method based on seeker optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 252-259.
[3] 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164.
YANG M, WANG K X.Day-ahead interval forecasting of PV power based on CEEMD-DBN model[J]. High voltage engineering, 2021, 47(4): 1156-1164.
[4] 李伟, 王冰, 曹智杰, 等. 基于混沌理论的鸡群改进算法及其在风电功率区间预测中的应用[J]. 太阳能学报,2021, 42(7): 350-358.
LI W,WANG B, CAO Z J, et al.Application of CCSO in wind power interval prediction[J]. Acta energiae solaris sinica, 2021, 42(7): 350-358.
[5] 杨茂, 董昊. 基于数值天气预报风速和蒙特卡洛法的短期风电功率区间预测[J]. 电力系统自动化, 2021, 45(5): 79-85.
YANG M, DONG H.Short-term wind power interval prediction based on wind speed of numerical weather prediction and Monte Carlo method[J]. Automation of electric power systems, 2021, 45(5): 79-85.
[6] 杨磊, 黄元生, 张向荣, 等. 基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究[J]. 电力系统保护与控制, 2020, 48(10): 81-90.
YANG L, HUANG Y S, ZHANG X R, et al.Research on short-term wind speed combined variable weight forecasting model based on ensemble empirical mode decomposition and Lasso algorithm[J]. Power system protection and control, 2020, 48(10): 81-90.
[7] 刘嘉诚, 刘俊, 赵宏炎, 等. 基于DKDE与改进mRMR特征选择的短期光伏出力预测[J]. 电力系统自动化,2021, 45(14): 13-21.
LIU J C, LIU J, ZHAO H Y, et al.Short-term photovoltaic output forecasting based on diffusion kernel density estimation and improved max-relevance and min-redundancy feature selection[J]. Automation of electric power systems, 2021, 45(14): 13-21.
[8] 栗然, 马涛, 张潇, 等. 基于卷积长短期记忆神经网络的短期风功率预测[J]. 太阳能学报,2021, 42(6): 304-311.
LI R, MA T, ZHANG X, et al.Short-term wind power prediction based on convolutional long-short-term memory neural networks[J]. Acta energiae solaris sinica, 2021,42(6): 304-311.
[9] 贾德香, 吕干云, 林芬, 等. 基于SAPSO-BP和分位数回归的光伏功率区间预测[J]. 电力系统保护与控制,2021, 49(10): 20-26.
JIA D X, LYU G Y, LIN F, et al.Photovoltaic power interval prediction based on SAPSO-BP and quantile regression[J]. Power system protection and control, 2021, 49(10): 20-26.
[10] 刘芳, 汪震, 刘睿迪, 等. 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报(工学版), 2021, 55(3): 594-600.
LIU F,WANG Z, LIU R D, et al.Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of Zhejiang University(engineering science), 2021, 55(3): 594-600.
[11] 赵康宁, 蒲天骄, 王新迎, 等. 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43(12): 4377-4386.
ZHAO K N, PU T J, WANG X Y, et al.Probabilistic forecasting for photovoltaic power based on improved Bayesian neural network[J]. Power system technology, 2019, 43(12): 4377-4386.
[12] 杨锡运, 张艳峰, 叶天泽, 等. 基于朴素贝叶斯的风电功率组合概率区间预测[J]. 高电压技术, 2020, 46(3): 1099-1108.
YANG X Y, ZHANG Y F, YE T Z, et al.Prediction of combination probability interval of wind power based on naive Bayes[J]. High voltage engineering, 2020, 46(3): 1099-1108.
[13] 邬超, 朱桂萍, 钱敏慧. 基于信息熵的历史数据选取对超短期风电功率预测精度影响研究[J]. 电网技术,2021, 45(5): 1767-1772.
WU C, ZHU G P, QIAN M H.Impact of historical data selection on accuracy of ultra-short-term wind power prediction based on prediction information entropy[J].Power system technology, 2021, 45(5): 1767-1772.
[14] 孙泽贤, 孙鹤旭. 计及误差反馈的短期风电功率预测[J]. 太阳能学报, 2020, 41(8): 281-287.
SUN Z X,SUN H X.Short-term wind power forecast considering error feedback[J]. Acta energiae solaris sinica, 2020, 41(8): 281-287.
[15] 杨锡运, 马雪, 张洋, 等. 基于EMD与加权马尔可夫链QR法的风电功率区间预测[J]. 太阳能学报, 2020, 41(2): 66-72.
YANG X Y, MA X, ZHANG Y, et al.Probabilistic intervals forecasting of wind power based on EMD weighted Markov chain QR method[J]. Acta energiae solaris sinica, 2020, 41(2): 66-72.
[16] 胡帅, 向月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(7): 28-36.
HU S, XIANG Y, SHEN X D, et al.Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J]. Automation of electric power systems, 2021, 45(7): 28-36.
[17] 赵传, 戴朝华, 付洋, 等. 考虑风电预测误差与系统安全域的风电装机规划多目标优化方法[J]. 太阳能学报,2020, 41(2): 110-117.
ZHAO C, DAI C H, FU Y, et al.Multi-objective optimization of wind power planning considering wind power predictive encoding and system security domain[J].Acta energiae solaris sinica, 2020, 41(2): 110-117.
[18] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.

基金

国家自然科学基金(51507134); 陕西省重点研发计划(2018ZDXM-GY-169); 西安市科技创新平台(201805057ZD8CG41)

PDF(2347 KB)

Accesses

Citation

Detail

段落导航
相关文章

/