为解决真实场景中光伏组件局部阴影区域分割受环境干扰的问题,该文提出基于图像处理的光伏局部阴影区域分割方法。根据光伏组件特征用改进的阈值分割方法提取组件边框,采用Hough变换检测组件边框线段,计算包围边框线段端点的最小凸包作为感兴趣区域。在感兴趣区域内再次使用改进的阈值分割方法提取局部阴影区域。用模拟仿真图像和真实场景图像验证该文所提方法的有效性,实验结果表明:所提方法可准确分割出光伏组件上的局部阴影区域且保持了遮挡区域的细节信息。与多阈值分割方法和基于Canny边缘检测的分割方法相比,该文所提方法的错误分类误差更小,类别像素准确率更高。
Abstract
In order to solve the problem that the partial shading region segmentation of photovoltaic(PV) modules disturbed by the environment in the real scene, an image processing based partial shading region segmentation of PV systems is proposed in this paper. According to the characteristics of PV modules, firstly the module frame is extracted by the improved threshold segmentation method, secondly the module frame lines are detected by Hough transform, then the minimum convex hull surrounding the endpoints of the frame lines is calculated as the ROI. The partial shading region in the ROI is extracted by the improved threshold segmentation method. The effectiveness of the proposed method is verified by simulated images and real scene images. The experimental results show that the proposed method can accurately segment the partial shading region on the PV module and maintain the details of the shading region. Compared with multiple threshold segmentation method and Canny edge detection based segmentation method, this method has smaller misclassification error and higher class pixel accuracy.
关键词
太阳电池 /
图像处理 /
霍夫变换 /
最大功率点跟踪器 /
图像分割
Key words
solar cell /
image processing /
Hough transform /
maximum power point tracker /
image segmentation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ALIK R, JUSOH A.An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module[J]. Solar energy, 2018, 163: 570-580.
[2] REZK H, AL-ORAN M, GOMAA M R, et al.A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system[J]. Renewable and sustainable energy reviews, 2019, 115: 109372.
[3] MARTIN A D,VAZQUEZ J R,CANO J M.MPPT in PV systems under partial shading conditions using artificial vision[J]. Electric power systems research, 2018, 162: 89-98.
[4] HARIHARAN R, CHAKKARAPANI M, ILANGO G S, et al.A method to detect photovoltaic array faults and partial shading in PV systems[J]. IEEE journal of photovoltaics, 2016, 6(5): 1278-1285.
[5] MEKKI H, MELLIT A, SALHI H.Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules[J]. Simulation modelling practice and theory, 2016, 67: 1-13.
[6] DAVIES L, THORNTON R, HUDSON P, et al.Automatic detection and characterization of partial shading in PV system[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, HI, USA, 2018.
[7] FADHEL S, DELPHA C, DIALLO D, et al.PV shading fault detection and classification based on I-V curve using principal component analysis: application to isolated PV system[J]. Solar energy, 2019, 179: 1-10.
[8] ZHENG P B, ZHANG J W.Quantitative nondestructive testing of wire rope based on pseudo-color image enhancement technology[J]. Nondestructive testing and evaluation, 2019, 34(3): 221-242.
[9] KARAKOSE M, FIRILDAK K.A shadow detection approach based on fuzzy logic using images obtained from PV array[C]//2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Istanbul, Turkey, 2015.
[10] KARAKOSE M, BAYGIN M, PARLAK K S, et al.A novel reconfiguration method using image processing based moving shadow detection,optimization,and analysis for PV arrays[J]. Journal of information science & engineering,2018, 34(5): 1307-1328.
[11] NIAZI K A K, AKHTAR W, KHAN H A, et al. Hotspot diagnosis for solar photovoltaic modules using a Naive Bayes classifier[J]. Solar energy, 2019, 190: 34-43.
[12] AKRAM M W,LI G Q, JIN Y, et al.Improved outdoor thermography and processing of infrared images for defect detection in PV modules[J]. Solar energy,2019, 190: 549-560.
[13] 王建丽, 刘立群, 张聪明. 图像处理在光伏局部阴影中的应用[J]. 太阳能学报, 2020, 41(2): 284-289.
WANG J L, LIU L Q, ZHANG C M.Application of image processing in shadow of photovoltaic panels[J]. Acta energiae solaris sinica, 2020, 41(2): 284-289.
[14] 毛峡, 石天朋. 光伏热斑图像有效区域分割算法研究[J]. 太阳能学报, 2018, 39(5): 1270-1276.
MAO X, SHI T P.Research on segmentation algorithm of effective region in photovoltaic hot spot image[J]. Acta energiae solaris sinica, 2018, 39(5): 1270-1276.
[15] WIDYANINGRUM E,GORTE B, LINDENBERGH R.Automatic building outline extraction from ALS point clouds by ordered points aided Hough transform[J]. Remote sensing, 2019, 11(14): 1727.
基金
国家自然科学基金(61503122; 12002120); 河南省重点研发与推广(科技攻关)资助项目(202102210142)