生物炭基材料在生物柴油制备中的研究进展

王亚琢, 李丹妮, 陈虹媛, 单锐, 袁浩然

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 188-197.

PDF(1237 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1237 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 188-197. DOI: 10.19912/j.0254-0096.tynxb.2021-1049

生物炭基材料在生物柴油制备中的研究进展

  • 王亚琢1,2, 李丹妮1, 陈虹媛1, 单锐1, 袁浩然1
作者信息 +

RESEARCH PROGRESS OF BIOCHAR-BASED MATERIALS IN PREPARATION OF BIODIESEL

  • Wang Yazhuo1,2, Li Danni1, Chen Hongyuan1, Shan Rui1, Yuan Haoran1
Author information +
文章历史 +

摘要

不同种类的生物质原料可通过热转化的方式制备生物炭,由于其独特的特性被广泛应用于不同的研究领域。近期,随着生物炭合成方法的大规模涌现,生物炭及生物炭基材料相关的研究广受关注。总结了生物炭基催化剂在生物柴油制备(酯交换/酯化反应)过程中的研究现状,简要描述了生物炭催化剂的设计和合成方法,并总结了生物炭催化剂在制备生物柴油中的应用,最后归纳了生物炭基催化剂在生物柴油制备中存在的问题,对今后的研究重点及前景做出展望,以期为将来低成本生物炭基催化剂的制备以及生物柴油合成的研究和发展提供指导建议。

Abstract

Biochar, produced by the thermal decomposition of various biomass sources, is applied in different fields of research due to its distinctive properties. With the recent explosion of methods for a large-scale synthesis of biochar, the number of literatures relevant to biochar and biochar based materials has increased exponentially. This review exclusively focuses on the current development of biochar based functional catalysts, and applications in (trans)esterification. Thus, this review firstly presents a brief description of the design and synthesis of the biochar based catalyst, and then summaries the applications of these biochar based catalyst based upon (trans)esterification. Finally, the current advances and the future perspectives of the biochar catalyst is presented. Hopefully, this review will offer a perspective and guidelines for the future research and development of biochar based catalysts for biodiesel production.

关键词

生物炭 / 催化剂 / 生物柴油 / 生物质

Key words

biochar / catalyst / biodiesel / biomass

引用本文

导出引用
王亚琢, 李丹妮, 陈虹媛, 单锐, 袁浩然. 生物炭基材料在生物柴油制备中的研究进展[J]. 太阳能学报. 2023, 44(2): 188-197 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1049
Wang Yazhuo, Li Danni, Chen Hongyuan, Shan Rui, Yuan Haoran. RESEARCH PROGRESS OF BIOCHAR-BASED MATERIALS IN PREPARATION OF BIODIESEL[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 188-197 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1049
中图分类号: TK513.5   

参考文献

[1] CARPENTER D, WESTOVER T L, CZERNIK S, et al.Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors[J]. Green chemistry, 2014, 16(2): 384-406.
[2] ALBERS S C, BERKLUND A M, GRAFF G D.The rise and fall of innovation in biofuels[J]. Nature biotechnology, 2016, 34(8): 814-821.
[3] LAM E, LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS catalysis, 2014, 4(10): 3393-3410.
[4] LI J, DAI J J, LIU G Q,et al.Biochar from microwave pyrolysis of biomass:a review[J]. Biomass and bioenergy, 2016, 94: 228-244.
[5] LIU W J, JIANG H, YU H Q.Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical reviews, 2015, 115(22): 12251-12285.
[6] ZAIMES G G, SORATANA K, HARDEN C L, et al.Biofuels via fast pyrolysis of perennial grasses:a life cycle evaluation of energy consumption and greenhouse gas emissions[J]. Environmental science & technology, 2015, 49(16): 10007-10018.
[7] CHEN Z M, XIAO X, CHEN B L, et al.Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental science & technology, 2015, 49(1): 309-317.
[8] MASAKAZU T, ATSUSHI T, MAI O, et al.Biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065): 178.
[9] SUN K, KANG M J, ZHANG Z Y, et al.Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene[J]. Environmental science & technology, 2013, 47(20): 11473-11481.
[10] ELKHALIFA S, AL-ANSARI T, MACKEY H R, et al.Food waste to biochars through pyrolysis:a review[J]. Resources, conservation and recycling, 2019, 144: 310-320.
[11] TAN X F, LIU S B, LIU Y G, et al.Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage[J]. Bioresource technology, 2017, 227: 359-372.
[12] SHEN G Q, ASHWORTH D J, GAN J, et al.Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery[J]. Environmental science & technology, 2016, 50(3): 1182-1189.
[13] WANG Y F, ZHANG Y, PEI L, et al.Converting Ni-loaded biochars into supercapacitors:implication on the reuse of exhausted carbonaceous sorbents[J]. Scientific reports, 2017, 7: 41523.
[14] ULRICH B A, IM E A, WERNER D, et al.Biochar and activated carbon for enhanced trace organic contaminant retention in stormwater infiltration systems[J]. Environmental science & technology, 2015, 49(10): 6222-6230.
[15] ABDULLAH S H Y S, HANAPI N H M, AZID A, et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production[J]. Renewable and sustainable energy reviews, 2017, 70: 1040-1051.
[16] LEE J C, LEE B, OK Y S, et al.Preliminary techno-economic analysis of biodiesel production over solid-biochar[J]. Bioresource technology, 2020, 306: 123086.
[17] AHMED M B, ZHOU J L, NGO H H, et al.Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource technology, 2016, 214: 836-851.
[18] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars’potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental pollution, 2011, 159(12): 3269-3282.
[19] DISSANAYAKE P D, YOU S, IGALAVITHANA A D, et al.Biochar-based adsorbents for carbon dioxide capture: a critical review[J]. Renewable and sustainable energy reviews, 2020, 119: 109582.
[20] LEE J, KIM K H, KWON E E.Biochar as a catalyst[J]. Renewable and sustainable energy reviews, 2017, 77: 70-79.
[21] JEMIMA ROMOLA C V, MEGANAHARSHINI M, RIGBY S P, et al. A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel[J]. Renewable and sustainable energy reviews, 2021, 145: 111109.
[22] BITONTO L D, REYNEL-ÁVILA H E, ENDOZA-CASTILLO D I, et al. Synthesis and characterization of nanostructured calcium oxides supported onto biochar and their application as catalysts for biodiesel production[J].Renewable energy, 2020, 160: 52-66.
[23] 李振华, 陈晓冰, 淳远, 等. 生物柴油合成反应中 KNO3/Al2O3催化剂的活性物种与失活研究[J]. 燃料化学学报, 2018, 46(9): 1079-1086.
LI Z H, CHEN X B, CHUN Y, et al.Active species and deactivation behavior of Al2O3 supported KNO3 catalyst in the synthesis of biodiesel via transesterification of soybe an oil[J]. Journal of fuel chemistry and technology, 2018,46(9): 1079-1086.
[24] MATHEW G M, RAINA D, NARISETTY V, et al.Recent advances in biodiesel production: challenges and solutions[J]. Science of the total environment, 2021, 794: 148751.
[25] KUMAR A, SAINI K, BHASKAR T.Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals[J]. Bioresource technology, 2020, 299: 122564.
[26] XIAO R, AWASTHI M K, LI R H, et al.Recent developments in biochar utilization as an additive in organic solid waste composting:a review[J]. Bioresource technology, 2017, 246: 203-213.
[27] CHA J S, PARK S H, JUNG S C, et al.Production and utilization of biochar: a review[J]. Journal of industrial and engineering chemistry, 2016, 40: 1-15.
[28] YU K L, LAU B F, SHOW P L, et al.Recent developments on algal biochar production and characterization[J]. Bioresource technology, 2017, 246: 2-11.
[29] GUIZANI C, VALIN S, BILLAUD J, et al.Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling[J]. Fuel, 2017, 207: 71-84.
[30] GASCO G, PAZ-FERREIRO J, ALVAREZ M L, et al.Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste management, 2018, 79: 395-403.
[31] NUNOURA T, WADE S R, BOURKE J P, et al.Studies of the flash carbonization process. 1. propagation of the flaming pyrolysis reaction and performance of a catalytic afterburner[J]. Industrial & engineering chemistry research, 2006, 45(2): 585-599.
[32] YOU S, OK Y S, CHEN S S, et al.A critical review on sustainable biochar system through gasification:energy and environmental applications[J]. Bioresource technology, 2017, 246: 242-253.
[33] LIU W J, ZENG F X, JIANG H, et al.Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresource technology, 2011, 102(17): 8247-8252.
[34] MULLEN C A, BOATENG A A, GOLDBERG N M, et al.Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis[J]. Biomass and bioenergy, 2010, 34(1): 67-74.
[35] CAO X F, SUN S N, SUN R C.Application of biochar-based catalysts in biomass upgrading: a review[J]. RSC advances, 2017, 7(77): 48793-48805.
[36] WAN Z H, SUN Y Q, TSANG D C W, et al. A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes[J]. Green chemistry, 2019, 21(17): 4800-4814.
[37] LI M J, LIU C M, CAO H B, et al.KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. Journal of materials chemistry A, 2014, 2(36): 14844.
[38] WANG J C, KASKEL S.KOH activation of carbon-based materials for energy storage[J]. Journal of materials chemistry, 2012, 22(45): 23710.
[39] DEHKHODA A M, WEST A H, ELLIS N.Biochar based solid acid catalyst for biodiesel production[J]. Applied catalysis A: general, 2010, 382(2): 197-204.
[40] UÇAR S, ERDEM M, TAY T, et al. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation[J]. Applied surface science, 2009, 255(21): 8890-8896.
[41] SUN L, TIAN C G, LI M T, et al.From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of materials chemistry A, 2013, 1(21): 6462.
[42] NAKAJIMA K, HARA M.Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst[J]. ACS catalysis, 2012, 2(7): 1296-1304.
[43] TODA M, TAKAGAKI A, OKAMURA M, et al.Green chemistry: biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065): 178-178.
[44] YU J T, DEHKHODA A M, ELLIS N.Development of biochar-based catalyst for transesterification of canola oil[J]. Energy & fuels, 2011, 25(1): 337-344.
[45] BHATIA S K, GURAV R, CHOI T R, et al.Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar[J]. Bioresource technology, 2020, 302: 122872.
[46] LYU H H, ZHANG Q R, SHEN B X.Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240: 124842.
[47] 严军华, 王舒笑, 袁浩然, 等. 新型花生壳生物炭基催化剂催化酯交换反应[J]. 太阳能学报, 2020, 41(4): 257-263.
YAN J H, WANG S X, YUAN H R, et al.Novel peanut shell biochar supported catalyst for transesterification reaction[J]. Acta energiae solaris sinica, 2020, 41(4): 257-263.
[48] TIAN K, LIU W J, ZHANG S, et al.One-pot synthesis of a carbon supported bimetallic Cu-Ag NPs catalyst for robust catalytic hydroxylation of benzene to phenol by fast pyrolysis of biomass waste[J]. Green chemistry, 2016, 18(20): 5643-5650.
[49] LIU J W, JIANG J G, MENG Y, et al.Preparation, environmental application and prospect of biochar-supported metal nanoparticles: a review[J]. Journal of hazardous materials, 2020, 388: 122026.
[50] LI X P, WANG C B, ZHANG J B, et al.Preparation and application of magnetic biochar in water treatment:a critical review[J]. Science of the total environment, 2020, 711: 134847.
[51] WANG J L, WANG S Z.Preparation, modification and environmental application of biochar: a review[J]. Journal of cleaner production, 2019, 227: 1002-1022.
[52] 王天任, 崔国民, 马溢, 等. 高酸值油料一步法制备生物柴油研究[J]. 太阳能学报, 2019, 40(3): 838-842.
WANG T R, CUI G M, MA Y, et al.Directly convert palm fatty acid distillate to biodiesel in esterification process[J]. Acta energiae solaris sinica, 2019, 40(3): 838-842.
[53] SAJJADI B, RAMAN A A A, ARANDIYAN H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models[J]. Renewable and sustainable energy reviews, 2016, 63: 62-92.
[54] TAKAGAKI A, TAGUSAGAWA C, HAYASHI S, et al.Nanosheets as highly active solid acid catalysts for green chemical syntheses[J]. Energy & environmental science, 2010, 3(1): 82-93.
[55] KASTNER J R, MILLER J, GELLER D P, et al.Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon[J]. Catalysis today, 2012, 190(1): 122-132.
[56] HIDAYAT A, ROCHMADI, WIJAYA K, et al.Esterification of palm fatty acid distillate with high amount of free fatty acids using coconut shell char based catalyst[J]. Energy procedia, 2015, 75: 969-974.
[57] DAWODU F A, AYODELE O, XIN J, et al.Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst[J]. Applied energy, 2014, 114: 819-826.
[58] DONG T, GAO D F, MIAO C, et al.Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char[J]. Energy conversion and management, 2015, 105: 1389-1396.
[59] RAFI J M, RAJASHEKAR A, SRINIVAS M, et al.Esterification of glycerol over a solid acid biochar catalyst derived from waste biomass[J]. RSC advances, 2015, 5(55): 44550-44556.
[60] XUE W, ZHAO H P, YAO J, et al.Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst[J]. Chinese journal of catalysis, 2016, 37(5): 769-777.
[61] DA LUZ CORRÊA A P, BASTOS R R C, ROCHA FILHO G N D, et al. Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction[J]. RSC advances, 2020, 10(34): 20245-20256.
[62] YUE X, CHEN D Z, LUO J, et al.Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources[J]. Applied energy, 2020, 268: 114970.
[63] AYADI M, AWAD S, VILLOT A, et al.Heterogeneous acid catalyst preparation from olive pomace and its use for olive pomace oil esterification[J]. Renewable energy, 2021, 165: 1-13.
[64] JENIE S N A, KRISTIANI A, SUDIYARMANTO, et al. Sulfonated magnetic nanobiochar as heterogeneous acid catalyst for esterification reaction[J]. Journal of environmental chemical engineering, 2020, 8(4): 103912.
[65] ZENG D L, LIU S L, GONG W L, et al.Synthesis, characterization and acid catalysis of solid acid from peanut shell[J]. Applied catalysis A: general, 2014, 469: 284-289.
[66] DEHKHODA A M, ELLIS N.Biochar-based catalyst for simultaneous reactions of esterification and transesterification[J]. Catalysis today, 2013, 207: 86-92.
[67] SHU Q, GAO J X, NAWAZ Z, et al.Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst[J]. Applied energy, 2010, 87(8): 2589-2596.
[68] CHELLAPPAN S, NAIR V, SAJITH V, et al.Experimental validation of biochar based green Brønsted acid catalysts for simultaneous esterification and transesterification in biodiesel production[J]. Bioresource technology reports, 2018, 2: 38-44.
[69] CHELLAPPAN S, NAIR V, SAJITH V, et al.Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification[J]. Chinese journal of chemical engineering, 2018, 26(12): 2654-2663.
[70] BASTOS R R C, DA LUZ CORRÊA A P, DA LUZ P T S, et al. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste[J]. Energy conversion and management, 2020, 205: 112457.
[71] LEE A F, BENNETT J A, MANAYIL J C, et al.Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification[J]. Chemical Society reviews, 2014, 43(22): 7887-7916.
[72] PATHAK G, DAS D, RAJKUMARI K, et al.Exploiting waste:towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst[J]. Green chemistry, 2018, 20(10): 2365-2373.
[73] KOSTIĆ M D, BAZARGAN A, STAMENKOVIĆ O S, et al.Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar[J]. Fuel, 2016, 163: 304-313.
[74] JUNG J M, OH J I, BAEK K, et al.Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst[J]. Energy conversion and management, 2018, 165: 628-633.
[75] JUNG J M, OH J I, PARK Y K, et al.CO2-mediated chicken manure biochar manipulation for biodiesel production[J]. Environmental research, 2019, 171: 348-355.
[76] MILADINOVIĆ M R, ZDUJIĆ M V, VELJOVIĆ D N, et al.Valorization of walnut shell ash as a catalyst for biodiesel production[J]. Renewable energy, 2020, 147: 1033-1043.
[77] JUNG S, KIM M, JUNG J M, et al.Valorization of swine manure biochar as a catalyst for transesterifying waste cooking oil into biodiesel[J]. Environmental pollution, 2020, 266: 115377.
[78] AKASH P B, SUMIT H D, KUMAR A,et al.Biodiesel synthesis from mesua ferrea oil using waste shell derived carbon catalyst[J]. Renewable energy, 2018, 121: 195-204.
[79] WANG S X, ZHAO C, SHAN R, et al.A novel peat biochar supported catalyst for the transesterification reaction[J]. Energy conversion and management, 2017, 139: 89-96.
[80] WANG S X, YUAN H R, WANG Y Z, et al.Transesterification of vegetable oil on low cost and efficient meat and bone meal biochar catalysts[J]. Energy conversion and management, 2017, 150: 214-221.
[81] ZHAO C, LV P M, YANG L M, et al.Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel[J]. Energy conversion and management, 2018, 160: 477-485.
[82] WANG Y S, YANG G, HE J, et al.Preparation of biochar catalyst from black liquor by spray drying and fluidized bed carbonation for biodiesel synthesis[J]. Process safety and environmental protection, 2020, 141: 333-343.
[83] NTAFLOU M, VAKROS J.Transesterification activity of modified biochars from spent malt rootlets using triacetin[J]. Journal of cleaner production, 2020, 259: 120931.
[84] FOROUTAN R, MOHAMMADI R, RAZEGHI J, et al.Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst[J]. Renewable energy, 2021, 168: 1207-1216.
[85] ZHAO C, YANG L M, XING S Y, et al.Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk[J]. Journal of cleaner production, 2018, 199: 772-780.
[86] WANG S X, SHAN R, WANG Y Z, et al.Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production[J]. Renewable energy, 2019, 130: 41-49.

基金

国家重点研发计划(2020YFC1908900); 国家自然科学基金(51776211); 广东省科技计划(2021A1515012263; 2019B110210003); 广州市科技计划(202002030365)

PDF(1237 KB)

Accesses

Citation

Detail

段落导航
相关文章

/