基于ERA5和全球海洋波浪再分析资料,统计分析2005—2019年间110°E~130°E、15°N~35°N海域的恶劣天气事件时空分布特征,在剔除恶劣天气时段下,对风能密度、波浪能密度、风能变异系数和波浪能变异系数进行分析。结果表明:2005—2019年间恶劣天气事件整体呈递增趋势,季节性差异大;总体上深远海海域恶劣天气出现时段比近海多,南海北部恶劣天气事件出现时段最多;在剔除恶劣天气时段后,东海深远海存在风能丰富且波浪能较密集的海域,台湾海峡以南近海风能丰富且稳定,但波浪能不密集且不稳定,南海北部近海海域波浪能比深远海更密集且更稳定,这与不剔除恶劣天气时段情况下波浪能分布特征存在较大差异。
Abstract
Based on ERA5 and global ocean wave reanalysis data, the temporal and spatial distribution characteristics of severe weather events in the sea areas 110°E-130°E and 15°N-35°N from 2005 to 2019 were statistically analyzed. The wind energy density, wave energy density, wind energy variation coefficient and wave energy variation coefficient were analyzed when the severe weather period was excluded. The results show that severe weather events show an overall increasing trend from 2005 to 2019, with large seasonal differences. On the whole, there are more severe weather periods in the deep sea area than that in the offshore area, and the most severe weather events occur in the northern part of the South China Sea. After eliminating bad weather period, there are areas with abundant wind energy and dense wave energy in the far-reaching sea of the East China Sea. The offshore wind of south of Taiwan strait is rich and stable, but wave energy is not intensive and unstable. Wave energy in the northern offshore waters of the South China Sea is more dense and stable than in the deep seas, it is quite different from the distribution characteristics of wave energy without eliminating the period of severe weather.
关键词
海上风电场 /
恶劣天气 /
风能资源评估 /
波浪能资源评估
Key words
offshore wind farm /
severe weather /
wind energy resource assessment /
wave energy resource assessment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DÍAZ H, SOARES C G. Review of the current status, technology and future trends of offshore wind farms[J]. Ocean engineering, 2020, 209: 107-381.
[2] 鲁宗相, 程丽娟, 乔颖, 等. 计及风资源约束的双天气模态海上风电系统可靠性评估[J]. 电网技术, 2015, 39(12): 3536-3542.
LU Z X, CHENG L J, QIAO Y, et al.Reliability evaluation of offshore wind power system with dual weather mode considering wind resource constraints[J]. Power grid technology, 2015, 39(12): 3536-3542.
[3] LEE J, ZHAO F.Wind energy technology[R]. GWEC global wind report 2020. 2021, 78.
[4] GAUGHAN E, FITZGERALD B.An assessment of the potential for co-located offshore wind and wavefarms in Ireland[J]. Energy, 2020, 200: 117-526
[5] RUSU E, RUSU L.An evaluation of the wave energy resources in the proximity of the wind farms operating in the North Sea[J]. Energy reports, 2021, 5(58): 2352-4847.
[6] COSTOYA X, DECASTRO M, CARVALHO D, et al.On the suitability of offshore wind energy resource in the United States of America for the 21st Century[J]. Applied energy, 2020, 262: 114-537.
[7] ZHENG C W, JING P, LI J X.Assessing the China Sea wind energy and wave energy resources from 1988 to 2009[J]. Ocean engineering, 2013, 65: 39-48.
[8] NIE B C, LI J C.Technical potential assessment of offshore wind energy over shallow continent shelf along China coast[J]. Renewable energy, 2018, 128: 391-399.
[9] HONG L X, MOELLER B.Offshore wind energy potential in China: under technical, spatial and economic constraints[J]. Energy, 2011, 36(7): 4482-4491.
[10] CHEN X P, WANG K M, ZHANG Z H, et al.An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea[J]. Energy, 2017, 134:789-801.
[11] WANG Z F, CHENG L D, SHENG D.Long-term wind and wave energy resource assessment in the South China Sea based on 30-year hindcast data[J]. Ocean engineering, 2018, 163: 58-75.
[12] WU Y N, TAO Y, ZHANG B Y, et al.A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: a case in China[J]. Ocean & coastal management, 2020, 184: 105-016.
[13] 黄玲玲, 符杨, 胡荣, 等. 基于运行维护的海上风电机组可用性评估方法[J]. 电力系统自动化, 2013, 37(16): 13-17.
HUANG L L, FU Y, HU R, et al.Usability evaluation method of offshore wind turbine based on operation and maintenance[J]. Automation of electric power systems, 2013, 37(16): 13-17.
[14] 邓达纮, 陆军. 浅析海上风电施工与运维装备[J]. 机电工程技术, 2019, 48(8): 45-47.
DENG D H, LU J.Brief analysis of offshore wind power construction and maintenance equipment[J]. Mechanical & electrical engineering technology, 2019, 48(8): 45-47.
[15] 时智勇, 王彩霞, 李琼慧, 等. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53(7): 8-17.
SHI Z Y, WANG C X, LI Q H, et al.Key issues of China’s offshore wind power development in the “14th Five-Year Plan”[J]. Electric power, 2020, 53(7): 8-17.
[16] 俞晓峰, 王倩, 李子林, 等. 深远海域海上风电工程风险和不确定因素研究[J]. 风能, 2018(2): 52-55.
YU X F, WANG Q, LI Z L, et al.Risks of offshore wind power projects in the far seas and uncertainty factor study[J]. Wind power, 2020, 53(7): 8-17.
[17] SOARES P, LIMA D, NOGUEIRA M.Global offshore wind energy resources using the new ERA-5 reanalysis[J]. Environmental research letters, 2020, 15(10): 10-40.
[18] FRANZKE C L E. Towards the development of economic damage functions for weather and climate extremes[J]. Ecological economics, 2021, 189: 107-172.
[19] ALBERGEL C, DUTRA E, MUNIER S, et al.ERA-5 and ERA-interim driven ISBA land surface model simulations: which one performs better?[J]. Hydrology and earth system sciences discussions, 2018, 22(6): 35-15.
[20] 许遐祯, 郭乔影, 李正泉, 等. 基于ASCAT风场数据的中国近海风能资源评估[J]. 气象科学, 2017, 37(6):816-824.
XU X Z, GUO Q Y, LI Z Q, et al.Wind resource assessment in the offshore of China based on ASCAT wind data[J]. Journal of the meteorological sciences, 2017, 37(6): 816-824.
[21] 肖晶晶, 李正泉, 郭芬芬, 等. 基于CCMP卫星资料的中国海域风能资源分析[J]. 海洋预报, 2017, 34(1): 9-18.
XIAO J J, LI Z Q, GUO F F, et al.Analysis of China Hea wind energy based on CCMP satellite date[J]. Marine forecasts, 2017, 34(1): 9-18.
[22] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
基金
上海市科学技术委员会资助项目(19DZ2254800)