不同温差发电循环流程系统的热经济分析

王博, 杨童赟, 张宇彤, 卞永宁, 有马博史

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 22-29.

PDF(3630 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3630 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 22-29. DOI: 10.19912/j.0254-0096.tynxb.2021-1069

不同温差发电循环流程系统的热经济分析

  • 王博1, 杨童赟1, 张宇彤1, 卞永宁1, 有马博史2
作者信息 +

THERMAL ECONOMIC ANALYSIS OF THERMOELECTRIC GENERATION SYSTEM WITH DIFFERENT CYCLE FLOW

  • Wang Bo1, Yang Tongyun1, Zhang Yutong1, Bian Yongning1, Hirofumi Arima2
Author information +
文章历史 +

摘要

采用模拟的方法,对朗肯循环、卡琳娜循环和上原循环建模,在不同热源温度环境下,分析不同循环流程热效率η和平准化度电成本CLCOE的差异;同时,通过对循环蒸发温度和透平入口压力进行分析,探究其在不同循环流程中对热经济性能的影响。研究结果表明,卡琳娜循环在各热源温度下均有较高的热效率,但经济指标表现不佳;低温热源环境,纯氨工质朗肯循环在同等条件下CLCOE最低,在设计时,朗肯循环应选用饱和蒸汽状态,尽可能增加透平入口压力,减小蒸发过热度;高温热源环境,上原循环CLCOE最低,卡琳娜循环和上原循环CLCOE极小值与热效率极大值对应的透平入口压力存在偏差,按最小CLCOE标准可获得更高的发电量和更低的设备成本。因此,在流程设计时,需考虑不同循环在各热源环境中的热经济性能。

Abstract

This study utilized simulation method, through the modeling of Rankine cycle, Kalinacycle and Uehara cycle, the differences in thermal efficiency(η) and leveled cost of energy (CLCOE) between different cycle processes were analyzed under different heat source temperature conditions. Meanwhile, the effects of evaporation temperature and turbine inlet pressure on thermal-economic performance in different cycle systems were also explored. The results show that Kalina cycle has highest thermal efficiency in each temperature condition of heat source, but its economic performance is poor. In low temperature heat source, the CLCOE of Rankine cycle with pure ammonia working fluid is the lowest under the same conditions. In design, Rankine cycle should choose saturated steam state, as far as possible to increase the turbine inlet pressure and reduce the evaporation superheat. Instead, in high temperature heat source, the CLCOE of Uehara cycle is the lowest. Moreover, there is a deviation of the turbine inlet pressure corresponding to the minimum CLCOE and the maximum thermal efficiency of Kalina cycle and Uehara cycle. Designed according to the minimum CLCOE principle at this point, more power generation and less equipment cost can be obtained. Therefore, thermal-economic performance of different cycles under different heat source temperature conditions should be considered in cycle flow design.

关键词

热能 / 温差发电 / 经济分析 / 朗肯循环 / 平准化度电成本

Key words

thermal energy / thermoelectric generation / economic analysis / Rankine cycle / LCOE

引用本文

导出引用
王博, 杨童赟, 张宇彤, 卞永宁, 有马博史. 不同温差发电循环流程系统的热经济分析[J]. 太阳能学报. 2023, 44(2): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1069
Wang Bo, Yang Tongyun, Zhang Yutong, Bian Yongning, Hirofumi Arima. THERMAL ECONOMIC ANALYSIS OF THERMOELECTRIC GENERATION SYSTEM WITH DIFFERENT CYCLE FLOW[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1069
中图分类号: TK114   

参考文献

[1] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.
WANG G L, ZHANG W, LIANG J Y, et al.Evaluation of geothermal resources potential in China[J]. Acta geoscientica sinica, 2017, 38(4): 449-459.
[2] 连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述[J]. 节能技术, 2011, 29(2): 123-128, 133.
LIAN H K, LI Y, SHU G Y Z, et al. An overview of domestic technologies for waste heat utilization[J]. Energy conservation technology, 2011, 29(2): 123-128, 133.
[3] 中国节能协会太阳能专业委员会. 2020中国太阳能热利用行业运行状况报告[R].
Special Committee of Solar Energy of China Energy Conversation Association. Report on the development of solar thermal industry of China(2020)[R].
[4] 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923.
SHI W Y, WANG C K, SHEN J F.Utilization and prospect of ocean energy resource in China[J]. Acta energiae solaris sinca, 2011, 32(6): 913-923.
[5] 张凯. 非共沸混合工质有机朗肯循环工质筛选及热经济性研究[D]. 北京: 华北电力大学, 2019.
ZHANG K.Research on selection and thermoeconomic analysis of zeotropic mixtures for organic Rankine cycle[D]. Beijing: North China Electric Power University, 2019.
[6] WANG M, JING R, ZHANG H R, et al.An innovative organic Rankine cycle (ORC) based ocean thermal energy conversion (OTEC) system with performance simulation and multi-objective optimization[J]. Applied thermal engineering, 2018, 145: 743-754.
[7] SUN F M, IKEGAMI Y, ARIMA H, et al.Performance analysis of the low-temperature solar-boosted power generation system-part I: comparison between Kalina solar system and Rankine solar system[J]. Journal of solar energy engineering, 2013, 135(1): 011006
[8] WANG J F, YAN Z Q, ZHOU E M, et al.Parametric analysis and optimization of a Kalina cycle driven by solar energy[J]. Applied thermal engineering, 2013, 50(1): 408-415.
[9] 吴双应, 汪菲, 肖兰. 基于低温烟气余热发电的Kalina循环热经济性能分析[J]. 化工学报, 2017, 68(3): 1170-1177.
WU S Y, WANG F, XIAO L.Thermo-economic performance analysis of Kalina cycle based on low temperature flue gas waste heat power generation[J]. CIESC journal, 2017, 68(3): 1170-1177.
[10] MATSUDA Y, YOSHITAKE T, SUGI T, et al.Construction of a static model for power generation of OTEC plant using Uehara cycle based on experimental data[J]. Journal of marine science and engineering, 2018, 6(1): 3.
[11] 陈凤云. 海洋温差能发电装置热力性能与综合利用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
CHEN F Y.Study on thermal performance and comprehensive utilization of ocean thermal energy conversion[D]. Harbin: Harbin Engineering University, 2016.
[12] BERNARDONI C, BINOTTI M, GIOSTRI A.Techno-economic analysis of closed OTEC cycles for power generation[J]. Renewable energy, 2019, 132: 1018-1033.
[13] OGRISICK S.Integration of Kalina cycle in a combined heat and power plant,a case study[J]. Applied thermal engineering, 2009, 29(14): 2843-2848.
[14] KÖSE Ö, KOÇ Y, YAĞLI H. Energy,exergy,economy and environmental (4E) analysis and optimization of single, dual and triple configurations of the power systems:Rankine cycle/Kalina cycle, driven by a gas turbine[J]. Energy conversion and management, 2021, 227: 113604.
[15] TURTON R, BAILIE R, WHITING W, et al.Analysis,synthesis and design of chemical processes[M]. New York: Pearson Education, 2018.
[16] 孙兰义. 换热器工艺设计[M]. 2版. 北京: 中国石化出版社, 2020.
SUN L Y.Thermal design of heat exchangers[M]. 2nd edition. Beijing: China Petrochemical Press, 2020.
[17] GOTO S, MOTOSHIMA Y, SUGI T, et al.Construction of simulation model for OTEC plant using Uehara cycle[J]. Electrical engineering in Japan, 2011, 176(2): 272-282.

基金

国家重点研发计划(2019YFB1504301); 国家自然科学基金(11972105); 佐贺大学海洋能源研究中心(IOES)2019年合作研究计划(19A02)

PDF(3630 KB)

Accesses

Citation

Detail

段落导航
相关文章

/