以OC4-DeepCWind半潜式风电机组基础和NREL的5 MW风电机组为研究对象,考虑浅水环境条件和潮汐影响,进行浮体水动力分析和系泊布置方案设计,对风电机组-浮体-系泊耦合系统进行整体动力响应分析。研究结果表明,在浅水条件下,浮体水动力特性和系泊回复刚度受水深影响显著,且在水深与结构的吃水比过小时,结构物与海底之间相对流速增大也会对结构物的安全性能产生不利影响,在结构设计阶段需特别考虑。
Abstract
Taking the OC4-DeepCWind semi-submersible wind turbine floater and NREL's 5 MW wind turbine as the research target, considering the shallow water environmental conditions and tidal effects, this paper carries out the hydrodynamic analysis of the floater and the design of the mooring layout scheme, as well as the coupled dynamic response analysis of wind turbine-floater-mooring system. The results show that under shallow water conditions, the hydrodynamic characteristics of the floater and mooring restoring stiffness are significantly affected by water depth, and the increase of the relative velocity between the structure and the seabed will also have a serious impact on the safety performance of the structure when the ratio of the water depth and structure draft is too small, which needs to be specially considered in the structural design stage.
关键词
海上风电机组 /
潮汐 /
系泊 /
浅水 /
水动力特性
Key words
offshore wind turbines /
tide /
mooring /
shallow water /
hydrodynamic characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAYATI I, GUEYDON S, BELLOLI M.Study of the effect of water depth on potential flow solution of the OC4 semisubmersible floating offshore wind turbine[J]. Energy procedia, 2015, 80: 168-176.
[2] 曾瑞安. 水深对多浮体风力发电平台的动力响应影响研究[D]. 舟山: 浙江海洋大学, 2017.
ZENG R A.Study on influence of water depth on dynamic response of multi-floating-body wind power platform[D]. Zhoushan: Zhejiang Ocean University, 2017.
[3] 刘周. 三种典型半潜式浮式风机基础水动力性能比较分析[D]. 广州: 华南理工大学, 2020.
LIU Z.Comparative hydrodynamic performance analysis of three typical kinds of semi-submersible floating foundation of offshore wind turbine[D]. Guangzhou: South China University of Technology, 2020.
[4] ZHANG L X,SHI W, KARIMIRAD M, et al.Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines[J]. Ocean engineering, 2020, 207: 107371.
[5] 范浩, 朱克强, 孙兆浩, 等. 海上半潜式浮式风机平台系泊系统对比研究[J]. 船舶工程, 2017, 39(7): 84-90.
FAN H, ZHU K Q, SUN Z H, et al.Contrastive study on mooring system of oceanic semi-submersible wind turbine platform[J]. Ship engineering, 2017, 39(7): 84-90.
[6] 邓露, 唐梓珈, 王彪, 等. 半潜型浮式风机运动特征及系泊系统的研究[J]. 船舶工程, 2016, 38(8): 1-6, 26.
DENG L, TANG Z J, WANG B, et al.Research on motion characteristics and mooring system of semi-submersible floating offshore wind turbines[J]. Ship engineering, 2016, 38(8): 1-6, 26.
[7] XU K, LARSEN K, SHAO Y L, et al.Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design[J]. Ocean engineering, 2020,219: 108377.
[8] ROBERTSON A, JONKMAN J, MASCIOLA M, et al.Definition of the semisubmersible floating system for phase II of OC4[R]. NREL/TP-5000-60601, 2014.
[9] SINTEF Ocean.RIFLEX 4.14.0 user guide[Z]. 2018.
[10] API RP 2SK-3RD. Design and analysis of station keeping systems for floating structures[S].
[11] CAMPANILE A, SCAMARDELLA A, PISCOPO V.Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths[J]. Ocean engineering, 2018, 148: 349-360.
基金
国家自然科学基金(51879247; 52171281)