太阳能和空气源复合热泵在不同模式下具有不同性能,如何在实际应用中以最佳的工作模式运行,对提高系统综合性能至关重要,为此提出2种用于实现系统最优模式切换的判断方法:1)基于最优模式切换的太阳能辐射强度和环境温度的复合环境参数范围表;2)流经2个蒸发器(太阳能集热/蒸发器和风冷蒸发器)的制冷剂质量流量分配比。基于此,在工程方程求解器(EES)中建立太阳能/空气双源辅助热泵热水器的仿真模型。首先,基于上海松江地区的气候条件模拟比较不同模式下的系统性能,再分析和讨论将复合环境参数范围表和质量流量分配比作为系统最优模式切换的判断方法的可行性。结果表明,在相同环境温度下,随着太阳辐射强度的增加,系统最优运行模式将由太阳能-空气模式转变为太阳能模式。此外,将流经2个蒸发器的制冷剂质量流量分配比作为模式切换的准则是可行的,对于本系统其最优运行模式由太阳能-空气模式转变为太阳能模式时的质量流量分配比临界值约为2.02。
Abstract
Solar energy and air source hybrid heat pump has different performance in different modes. How to operate in the best working mode in practical application is very important for improving the comprehensive performance of the system. Therefore, two judgment methods for realizing the optimal mode switching of the system are proposed:1)The composite environmental parameter range table of solar radiation intensity and ambient temperature based on the optimal mode switching;2)Refrigerant mass flow distribution ratio through two evaporators (solar collector/evaporator and air-cooled evaporator). Based on this, the simulation model of solar/air dual source auxiliary heat pump water heater is established in Engineering Equation Solrer(EES). Firstly, the system performance under different modes is simulated and compared based on the climate conditions in Songjiang District, Shanghai, and then the feasibility of taking the composite environmental parameter range table and mass flow distribution ratio as the judgment method of system optimal mode switching is analyzed and discussed. The results show that at the same ambient temperature, with the increase of solar radiation intensity, the optimal operation mode of the system will change from solar-air mode to solar mode. In addition, it is feasible to take the refrigerant mass flow distribution ratio flowing through the two evaporators as the criterion for mode switching. For the system, the critical value of the mass flow distribution ratio when the optimal operation mode changes from solar-air mode to solar mode is about 2.02.
关键词
太阳能 /
热泵系统 /
性能系数 /
模式切换 /
数值模拟
Key words
solar energy /
heat pump systems /
coefficient of performance /
mode switching /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHUA K J, CHOU S K, YANG W M.Advances in heat pump systems: a review[J]. Applied energy, 2010, 87(12): 3611-3624.
[2] KAMEL R S, FUNG A S, DASH P R H. Solar systems and their integration with heat pumps: a review[J]. Energy and buildings, 2015, 87: 395-412.
[3] 谢豪, 马素霞, 尹建国, 等. 相变蓄热蒸发型空气源热泵性能优化实验研究[J]. 太阳能学报, 2017, 38(8): 2253-2257.
XIE H, MA S X, YIN J G, et al.Experimental study on performance optimization of phase change regenerative evaporative air source heat pump[J]. Acta energiae solaris sinica, 2017, 38(8): 2253-2257.
[4] ZHANG L, JIANG Y Q, DONG J K, et al.Advances in vapor compression air source heat pump system in cold regions: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 353-365.
[5] DENG W S, YU J L.Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater[J]. Energy conversion and management, 2016, 120: 378-387.
[6] 郭春梅, 许卫龙, 王宇, 等. 广东地区太阳能-空气源热泵复合系统供暖供生活热水实验研究[J]. 热科学与技术, 2020, 19(2): 79-86.
GUO C M, XU W L, WANG Y, et al.Experimental study on solar air source heat pump system for domestic hot water supply in Guangdong province[J]. Journal of thermal science and technology, 2020, 19(2): 79-86.
[7] KLEIN S A.Calculation of flat-plate collector loss coefficients[J]. Solar energy, 1975, 17(1): 79-80.
[8] 孙如军, 韩荣涛, 李兴宾. 平板型太阳能集热器原理与应用[M]. 北京: 冶金工业出版社, 2017: 34-35.
SUN R J, HAN R T, LI X B.Principle and application of flat plate solar collector[M]. Beijing: Metallurgical Industry Press, 2017: 34-35.
[9] CAI J Y, ZHANG F, JI J.Comparative analysis of solar-air dual source heat pump system with different heat source configurations[J]. Renewable energy, 2020, 150: 191-203.
[10] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006: 461-462.
YANG S M, TAO W Q.Heat transfer[M]. Beijing: Higher Education Press, 2006: 461-462.
[11] 陆亚俊, 马最良, 姚杨. 空调工程中的制冷技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1997: 111.
LU Y J, MA Z L, YAO Y.Refrigeration technology in air conditioning engineering[M]. Harbin: Harbin Engineering University Press, 1997: 111.
[12] BRUNIN O, FEIDT M, HIVET B.Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump[J]. International journal of refrigeration, 1997, 20(5): 308-318.
[13] SHAH M M.A general correlation for heat transfer during film condensation inside pipes[J]. International journal of heat and mass transfer, 1979, 22(4): 547-556.
[14] YANG S M, ZHANG Z Z.An experimental study of natural convection heat transfer from a horizontal cylinder in high rayleigh number laminar and turbulent regions[C]//International Heat Transfer Conferences, Brighton, UK, 1994: 185-189.
[15] KONG X Q, SUN P L, DONG S D, et al.Experimental performance analysis of a direct-expansion solar-assisted heat pump water heater with R134a in summer[J]. International journal of refrigeration, 2018, 91: 12-19.
[16] GUO J J, WU J Y, WANG R Z, et al.Experimental research and operation optimization of an air-source heat pump water heater[J]. Applied energy, 2011, 88(11): 4128-4138.