基于最优滚动控制域的储能控制策略

赵团团, 邬昌军, 巩晓赟

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 247-253.

PDF(1584 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1584 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 247-253. DOI: 10.19912/j.0254-0096.tynxb.2021-1093

基于最优滚动控制域的储能控制策略

  • 赵团团1, 邬昌军2, 巩晓赟2
作者信息 +

ENERGY STORAGE CONTROL STRATEGY BASED ON PTIMAL ROLLING CONTROL DOMAIN

  • Zhao Tuantuan1, Wu Changjun2, Gong Xiaoyun2
Author information +
文章历史 +

摘要

针对风电场预测功率与实际功率不匹配以及风力发电不确定性问题,提出一种以补偿风电预测误差和平抑风电波动为目标的储能控制策略。该策略以先进控制理论为基础,结合储能补偿预测区间和储能平抑风电波动区间,提取考虑储能运行成本的储能最优滚动控制域。首先,针对储能补偿预测误差目标,制定储能控制策略,提取允许误差内的储能补偿区间;其次,考虑风电功率波动要求及荷电状态(SOC)约束,采用模型预测控制求解出储能滚动控制序列,确定储能平抑区间。最后,考虑储能运行成本,将补偿区间和平抑区间相结合,制定储能最优滚动控制区间,以此为基础确定储能容量。以中国新疆某风电场为例,对该文提出的储能控制策略与传统控制策略进行对比验证,验证所提策略的可行性和有效性。

Abstract

Aiming at the mismatch between predicted power and actual power of wind farm and the uncertainty of wind power generation, an energy storage control strategy for compensating wind power prediction error and restraining wind power fluctuation is proposed. Based on the advanced control theory, combined with the prediction interval of energy storage compensation and the fluctuation interval of energy storage stabilizing the wind power, the optimal rolling control domain of energy storage considering the operation cost of energy storage is extracted. Firstly, aiming at the prediction error target of energy storage compensation, the energy storage control strategy is formulated to extract the energy storage compensation interval within the allowable error. Secondly, considering the wind power fluctuation permissible range and SOC (state of charge) state constraints, the model predictive control is used to solve the energy storage rolling control sequence and determine the energy storage stabilization interval. Finally, considering the operation cost of energy storage, the optimal rolling control interval of energy storage is formulated by combining the compensation interval and suppression interval, and the energy storage capacity is determined on this basis. Taking a wind farm in Xinjiang as an example, the energy storage control strategy proposed in this paper is compared with the traditional control strategy to verify the feasibility and effectiveness of the proposed strategy.

关键词

风力发电 / 储能 / 功率波动平抑 / 预测误差补偿 / 模型预测控制 / 储能运行策略

Key words

wind power / energy storage / power smoothing / prediction error compensation / model predictive control / energy storage operation strategy

引用本文

导出引用
赵团团, 邬昌军, 巩晓赟. 基于最优滚动控制域的储能控制策略[J]. 太阳能学报. 2023, 44(2): 247-253 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1093
Zhao Tuantuan, Wu Changjun, Gong Xiaoyun. ENERGY STORAGE CONTROL STRATEGY BASED ON PTIMAL ROLLING CONTROL DOMAIN[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 247-253 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1093
中图分类号: TM61   

参考文献

[1] 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J]. 电力系统自动化, 2019, 43(8): 15-25.
LI J L, YUAN X D, YU Z G, et a1. Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of electric power systems, 2019, 43(8): 15-25.
[2] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315-3325.
LI X J, WANG S X, HUI D.Summary and prospect of operation control and application method for battery energy storage systems[J]. Power system technology, 2017, 41(10): 3315-3325.
[3] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于置信区间估计及储能装置优化配置的风电场可靠出力研究[J]. 电力自动化设备, 2017, 37(5): 85-91.
YE R L, GUO Z Z, LIU R Y, et a1. Reliable power output based on confidence interval estimationand optimal ESS configuration of wind farm[J]. Electric power automation equipment, 2017, 37(5): 85-91.
[4] 张熙, 张峰, 梁军, 等. 基于风电功率预测的复合储能超前优化控制策略[J]. 电力系统自动化, 2015, 39(23): 58-65.
ZHANG X, ZHANG F, LIANG J, et a1. Energy storage power and capacity allocation based on wind power forecasting error distribution[J]. Automation of electric power systems, 2015, 39(23): 58-65.
[5] 兑潇玮, 朱桂萍, 刘艳章. 考虑预测误差的风电场储能配置优化方法[J]. 电网技术, 2017, 41(2): 434-439.
DUI X W, ZHU G P, LIU Y Z.Research on battery storage sizing for wind farm considering forecast error[J]. Power system technology, 2017, 41(2): 434-439.
[6] 张江林, 高红均, 王家怡, 等. 计及预测精度及拓扑结构的光伏电站储能经济配置[J]. 电力自动化设备, 2019, 39(6): 115-121.
ZHANG J L, GAO H J, WANG J Y, et a1. Economic allocation of energy storage in photovoltaic power station considering prediction accuracy and topological structure[J]. Electric power automation equipment, 2019, 39(6): 115-121.
[7] 茆美琴, 洪嘉玲, 张榴晨. 考虑光伏出力预测误差修正的储能优化配置方法[J]. 太阳能学报, 2021, 42(2): 410-416.
MAO M Q, HONG J L,ZHANG L C.Energy storage optimization configuration method considering conditional forecast error correction[J]. Acta energiae solaris sinica, 2021, 42(2): 410-416.
[8] ZHANG X S, YUAN Y, HUA L, et al.On generation schedule tracking of wind farms with battery energy storage systems[J]. IEEE transactions on sustainable energy, 2017, 8(1): 341-353.
[9] 孙泽伦, 陈洁, 闫亚岭, 等. 基于混合储能平抑风电波动的双堆自循环协调控制[J]. 太阳能学报, 2021, 42(4): 125-132.
SUN Z L, CHEN J, YAN Y L, et a1. Coordination control of double reactors self-circulation based on hybrid energy storage for wind power fluctuation suppression[J]. Acta energiae solaris sinica, 2021, 42(4): 125-132.
[10] 李征, 陈佳瑜, 石坤. 风电功率波动频率域分析及储能平滑功率算法优化[J]. 太阳能学报, 2020, 41(4): 184-193.
LI Z, CHEN J Y, SHI K, et a1. Frequency domain analysis of wind power fluctuation and control strategy optimization of power smoothing[J]. Acta energiae solaris sinica, 2020, 41(4): 184-193.
[11] 钱韦廷, 赵长飞, 万灿, 等. 基于概率预测的混合储能平抑风电波动随机优化调控方法[J].电力系统自动化, 2021, 45(18): 18-27.
QIAN W T, ZHAO C F, WAN C, et a1. Probabilistic forecasting based stochastic optimal dispatch and control method of hybrid energy storage for smoothing wind power fluctuations[J]. Automation of electric power systems, 2021, 45(18): 18-27.
[12] 孙玉树, 张国伟, 唐西胜, 等. 风电功率波动平抑下的MPC双储能控制策略研究[J]. 电工技术学报, 2019, 34(3): 571-578.
SUN Y S, ZHANG G W, TANG X S, et a1. Research on MPC and daul energy storage control strategies with wind power fluctuation mitigation[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 571-578.
[13] 孙玉树, 唐西胜, 孙晓哲, 等. 风电波动平抑的储能容量配置方法研究[J]. 中国电机工程学报, 2017, 37(S1): 88-97.
SUN Y S, TANG X S, SUN X Z, et a1. Research on energy storage capacity allocation method for smoothing wind power fluctuations[J]. Proceedings of the CSEE, 2017, 37(S1): 88-97.
[14] 谢丽蓉, 郑浩, 魏成伟, 等. 兼顾补偿预测误差和平抑波动的光伏混合储能协调控制策略[J]. 电力系统自动化, 2021, 45(3): 130-138.
XIE L R, ZHENG H, WEI C W, et a1. Coordinated control strategy of photovoltaic hybrid energy storage considering prediction error compensation and fluctuation suppression[J]. Automation of electric power systems, 2021, 45(3): 130-138.
[15] 石涛, 张斌, 晁勤, 等. 兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 电网技术, 2016, 40(2): 477-483.
SHI T, ZHANG B, CHAO Q, et a1. Economic storage ratio and optimal control of hybrid energy capacity combining stabilized wind power fluctuations with compensated predictive errors[J]. Power system technology, 2016, 40(2): 477-483.
[16] 王境彪, 李江, 胡立强, 等. 基于双目标时变交集的电池储能改善风电场出力控制[J]. 电力系统保护与控制, 2016, 44(18): 31-40.
WANG J B, LI J, HU L Q, et a1. A control of BESS to improve the wind farm output based on time-varying intersection of dual targets[J]. Power system protection and control, 2016, 44(18): 31-40.
[17] 刘颖明, 王晓东, 彭朝阳. 计及储能出力水平的平滑风电功率模型预测控制策略[J]. 电网技术, 2020, 44(5): 1723-1731.
LIU Y M, WANG X D, PENG C Y.Smoothing wind power model using predictive control strategy with energy storage output level[J]. Power system technology, 2020, 44(5): 1723-1731.

基金

国家自然科学基金(52075500; 51405453); 河南省科技攻关项目(212102210313)

PDF(1584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/