不同材质风力机叶片绕流流场特征变化PIV实验研究

姚慧龙, 张立茹, 张嘉奇, 高伟, 汪建文

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 140-145.

PDF(2623 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2623 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 140-145. DOI: 10.19912/j.0254-0096.tynxb.2021-1107

不同材质风力机叶片绕流流场特征变化PIV实验研究

  • 姚慧龙1, 张立茹1~3, 张嘉奇1, 高伟1, 汪建文1~3
作者信息 +

PIV EXPERIMENTAL RESEARCH ON CHARACTERISTIC CHANGE OF FLOW FIELD AROUND WIND TURBINE BLADES WITH DIFFERENT MATERIALS

  • Yao Huilong1, Zhang Liru1~3, Zhang Jiaqi1, Gao Wei1, Wang Jianwen1~3
Author information +
文章历史 +

摘要

考虑风力机叶片变形对绕流流场的影响,通过粒子图像测速(PIV)方法,采集两副翼型相同、材质分别玻璃聚酯(叶片Ⅰ)和玻璃聚醋内部填充泡沫(叶片Ⅱ)的水平轴风力机叶片绕流流场信息,对不同测试截面处流场数据进行分析。研究结果表明:相比于叶片Ⅰ,相同工况下,叶片Ⅱ的总体涡量、回流区的面积和时均速度更大,轴向雷诺应力更小;随着相对轴向距离的增加,时均速度在相对高度方向波动减小,材质对轴向雷诺应力影响逐渐减弱。实验工况下,叶片材质对绕流流场特征的影响大于叶尖速比对其的影响,并沿径向方向有增大的趋势。

Abstract

Considering the effect of the deformation of wind turbine blades on the surrounding flow field, the particle image velocimetry (PIV) method is used to collect the surrounding flow field information of two horizontal axis wind turbine blades with the same material but different aileron shapes, namely glass polyester(blade Ⅰ) and glass polyester filled with foam(blade Ⅱ), so as to analyze the flow field data at different test sections. The research results show that compared with blades Ⅰ, the average vorticity, the area of the recirculation zone and the time-averaged velocity of the blade Ⅱ are larger, and the axial Reynolds stress is smaller under the same working conditions. With the increase of the relative axial distance, the fluctuation of the time-averaged velocity in the relative height direction decreases, and the influence of the material on the axial Reynolds stress gradually weakens. Under the test conditions, the influence of the blade material on the characteristics of the surrounding flow field is greater than the influence of the tip speed ratio on it, and it has a tendency to increase in the radial direction.

关键词

风力机 / 叶片 / 材质 / 绕流流场特征 / 粒子图像测速

Key words

wind turbines / blades / material / characteristics of flow field around flow / PIV

引用本文

导出引用
姚慧龙, 张立茹, 张嘉奇, 高伟, 汪建文. 不同材质风力机叶片绕流流场特征变化PIV实验研究[J]. 太阳能学报. 2023, 44(2): 140-145 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1107
Yao Huilong, Zhang Liru, Zhang Jiaqi, Gao Wei, Wang Jianwen. PIV EXPERIMENTAL RESEARCH ON CHARACTERISTIC CHANGE OF FLOW FIELD AROUND WIND TURBINE BLADES WITH DIFFERENT MATERIALS[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 140-145 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1107
中图分类号: TK83   

参考文献

[1] 孙贵洋, 陈二云, 杨爱玲. 凹凸前缘叶片气动性能与绕流流场数值研究[J]. 热能动力工程, 2019, 34(4): 127-134.
SUN G Y, CHEN E Y, YANG A L.Numerical study on aerodynamic characteristics and flow fields of airfoil with wavy leading edge[J]. Journal of engineering for thermal energy and power, 2019, 34(4): 127-134.
[2] 杨景茹, 杨爱玲, 陈二云, 等. 锯齿尾缘叶片气动特性和绕流流场的数值研究[J]. 航空动力学报, 2017, 32(4): 900-908.
YANG J R, YANG A L, CHEN E Y, et al.Numerical research on aerodynamic characteristics and flow fields of airfoil with serrated trailing edge[J]. Journal of aerospace power, 2017, 32(4): 900-908.
[3] WANG H P, JIANG X, CHAO Y, et al.Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine[J]. Energy, 2019, 182: 988-998.
[4] 刘家成, 陈二云, 杨爱玲, 等. 非光滑表面叶片气动及降噪特性的研究[J]. 热能动力工程, 2020, 35(12): 31-39.
LIU J C, CHEN E Y, YANG A L, et al.Study on noise reduction characteristics of blade with non-smooth surface[J]. Journal of engineering for thermal energy and power, 2020, 35(12): 31-39.
[5] LI Q A, XU J Z, MAEDA T, et al.Laser Doppler velocimetry (LDV) measurements of airfoil surface flow on a horizontal axis wind turbine in boundary layer[J]. Energy, 2019, 183: 341-357.
[6] 高志鹰, 汪建文, 韩晓亮, 等. 风力机叶片动态绕流结构的PIV实验研究[J]. 工程热物理学报, 2009, 30(2): 230-232.
GAO Z Y, WANG J W, HAN X L, et al.PIV experiment on dynamic flow around a blade of the wind turbine[J]. Journal of engineering thermophysics, 2009, 30(2): 230-232.
[7] 牛佳佳, 张立茹, 焦雪文, 等. 偏航工况下风力机叶片绕流流场特性的探究[J]. 太阳能学报, 2021, 42(4): 493-496.
NIU J J, ZHANG L R, JIAO X W, et al.Investigation on flow field characteristics of wind turbine blade under yaw condition[J]. Acta energiae solaris sinica, 2021, 42(4): 493-496.
[8] 姚世刚, 戴丽萍, 康顺. 风力机叶片气动性能及流固耦合分析[J]. 工程热物理学报, 2016, 37(5): 988-992.
YAO S G, DAI L P, KANG S.Aerodynamic performance and fluid-structure coupling analysis of wind turbine blades[J]. Journal of engineering thermophysics, 2016, 37(5): 988-992.
[9] 喻涛涛, 张立茹, 王雪丽. 基于流固耦合的风力机叶片变形研究[J]. 可再生能源, 2019, 37(9): 1381-1385.
YU T T, ZHANG L R, WANG X L.Research on the deformation of wind turbine blade using fluid-solid coupling method[J]. Renewable energy resources, 2019, 37(9): 1381-1385.
[10] 苑云, 张小虎, 朱肇昆, 等. 大型风力发电叶片变形的摄像测量方法研究[J]. 计算机应用, 2012, 32(S1): 114-117.
YUAN Y, ZHANG X H, ZHU Z K, et al.Deformation measurement of large-scale wind turbine blades using videometrics[J]. Journal of computer applications, 2012, 32(S1): 114-117.
[11] 周婞. 基于数字图像的风机叶片变形高速测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
ZHOU X.High speed wind turbine blades deformation measurement based on digital image[D]. Harbin: Harbin Institute of Technology, 2018.
[12] 汪建文, 马剑龙, 刘雄飞, 等. 一种加厚型高气动性能风力机叶片: CN103423083A [P].2014-04-02.
WANG J W, MA J L, LIU X F, et al. Thickened high aerodynamic wind turbine blade: CN103423083A[P].2014-04-02.

基金

国家自然科学基金(52066013); 内蒙古自然科学基金(2020MS05067)

PDF(2623 KB)

Accesses

Citation

Detail

段落导航
相关文章

/