基于量子点太阳电池的高效光学利用策略

王龙祥, 邢美波, 王瑞祥

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 436-444.

PDF(1712 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1712 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 436-444. DOI: 10.19912/j.0254-0096.tynxb.2021-1115

基于量子点太阳电池的高效光学利用策略

  • 王龙祥, 邢美波, 王瑞祥
作者信息 +

EFFICIENT LIGHT UTILIZATION STRATEGIES BASED ON QUANTUM DOT SOLAR CELLS

  • Wang Longxiang, Xing Meibo, Wang Ruixiang
Author information +
文章历史 +

摘要

该文总结了可应用于量子点太阳电池的各种光捕获策略以及高能光子和低能光子的有效利用策略。表面织构纹理、周期性纳米结构以及等离子体纳米结构等光捕获技术可有效增强器件的光吸收。应用多激子效应、热激子提取以及下转换等手段是解决高能光子吸收后载流子热化损失问题的重要方法,而上转换以及中间带等结构则是实现亚带隙低能光子有效利用的重要途径。分析总结了不同策略的优劣势以及最近的应用进展,并对各种光学利用策略的发展提出了展望。

Abstract

In this paper, various light capture strategies applied to quantum dot solar cells and efficient utilization strategies of high and low energy photons are summarized. Light-capture techniques such as surface texture, periodic nanostructures and plasma nanostructures can effectively enhance the light absorption of the device. The application of multi-exciton effect,hot carrier extraction and down-conversion is an important method to solve the thermalization loss of photocarriers after the absorption of high energy photon,while up-conversion and intermediate band structure are important ways to realize effective utilization of low energy photons in sub-bandgap. The advantages and disadvantages of different optical utilization strategies and their recent application progress are summarized, and the prospects for the development of various optical utilization strategies are put forward.

关键词

半导体量子点 / 太阳电池 / 光吸收 / 多激子产生 / 热激子提取

Key words

semiconductor quantum dot / solar cells / light absorption / multi-exciton generation / hot carrier extraction

引用本文

导出引用
王龙祥, 邢美波, 王瑞祥. 基于量子点太阳电池的高效光学利用策略[J]. 太阳能学报. 2023, 44(2): 436-444 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1115
Wang Longxiang, Xing Meibo, Wang Ruixiang. EFFICIENT LIGHT UTILIZATION STRATEGIES BASED ON QUANTUM DOT SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 436-444 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1115
中图分类号: TM914.4   

参考文献

[1] GIL L, BERNARDO J.An approach to energy and climate issues aiming at carbon neutrality[J]. Renewable energy focus, 2020, 33: 37-42.
[2] PATTANTYUS-ABRAHAM A G, KRAMER I J, BARKHOUSE A R, et al. Depleted-heterojunction colloidal quantum dot solar cells[J]. ACS nano, 2010, 4(6): 3374-3380.
[3] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(S2): 17-18, 36.
LIU X Y.Progress and prospects of lead halide perovskite quantum dots solar cells[J]. Materials reports, 2020, 34(S2): 17-18, 36.
[4] WANG H P, HE J H.Toward highly efficient nanostructured solar cells using concurrent electrical and optical design[J]. Advanced energy materials, 2017, 7(23): 1-20.
[5] KIM T, JIN X, SONG J H, et al.Efficiency limit of colloidal quantum dot solar cells: effect of optical interference on active layer absorption[J]. ACS energy letters, 2020, 5(1): 248-251.
[6] HIRST L C, EKINS-DAUKES N J. Fundamental losses in solar cells[J]. Progress in photovoltaics: research and applications, 2011, 19(3): 286-293.
[7] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[8] ARAÚJO G L, MARTÍ A. Absolute limiting efficiencies for photovoltaic energy conversion[J]. Solar energy materials and solar cells, 1994, 33(2): 213-240.
[9] HANNA M C, NOZIK A J.Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers[J]. Journal of applied physics, 2006, 100(7): 074510.
[10] ROSS R T, NOZIK A J.Efficiency of hot-carrier solar energy converters[J]. Journal of applied physics, 1982, 53(5): 3813-3818.
[11] TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by down-conversion of high-energy photons[J]. Journal of applied physics, 2002, 92(3): 1668-1674.
[12] TRUPKE T, GREEN M A, WÜRFEL P. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J]. Journal of applied physics, 2002, 92(7): 4117-4122.
[13] ASAHI S, KAIZU T, KITA T.Adiabatic two-step photoexcitation effects in intermediate-band solar cells with quantum dot-in-well structure[J]. Scientific reports, 2019, 9(1): 1-8.
[14] BRADY B, WANG P H, STEENHOFF V, et al.Nanostructuring solar cells using metallic nanoparticles[M]. Amsterdam: Elsevier, 2019: 197-221.
[15] 四建方, 冯仕猛. 减反射膜玻璃对光伏组件光增益的分析[J]. 太阳能学报, 2015, 36(9): 2101-2105.
SI J F, FENG S M.Analysis of optical gain of anti-reflection coating glass for solar module[J]. Acta energiae solaris sinica, 2015, 36(9): 2101-2105.
[16] CHEN D.Anti-reflection (AR) coatings made by sol-gel processes: a review[J]. Solar energy materials and solar cells, 2001, 68(3): 313-336.
[17] KOLEILAT G I, KRAMER I J, WONG C T O, et al. Folded-light-path colloidal quantum dot solar cells[J]. Scientific reports, 2013, 3(1): 1-5.
[18] BRONGERSMA M L, CUI Y, FAN S H.Light management for photovoltaics using high-index nanostructures[J]. Nature materials, 2014, 13(5): 451-460.
[19] YU Z F, RAMAN A, FAN S H.Fundamental limit of nanophotonic light trapping in solar cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491-17496.
[20] DUDEM B, HEO J H, LEEM J W, et al.CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers[J]. Journal of materials chemistry A, 2016, 4(20): 7573-7579.
[21] MANZOOR S, YU Z S J, ALI A, et al. Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer[J]. Solar energy materials and solar cells, 2017, 173: 59-65.
[22] HUA B, LIN Q F, ZHANG Q P, et al.Efficient photon management with nanostructures for photovoltaics[J]. Nanoscale, 2013, 5(15): 6627-6640.
[23] SCHROPP R E I, RATH J K, LI H. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells[J]. Journal of crystal growth, 2009, 311(3): 760-764.
[24] BASU MALLICK S, SERGEANT N P, AGRAWAL M, et al.Coherent light trapping in thin-film photovoltaics[J]. MRS bulletin, 2011, 36(6): 453-460.
[25] 沈宏君, 张瑞, 张天耀. 一种异型布拉格背反射结构的多晶硅薄膜太阳能电池光吸收分析[J]. 太阳能学报, 2015, 36(5): 1141-1144.
SHEN H J, ZHANG R, ZHANG T Y.Absorption analysis of polycrstalline silicon thin film solar cellconsisting of irregularly shaped DBR[J]. Acta energiae solaris sinica, 2015, 36(5): 1141-1144.
[26] MOKKAPATI S, CATCHPOLE K R.Nanophotonic light trapping in solar cells[J]. Journal of applied physics, 2012, 112(10): 101101.
[27] TANAKA Y, KAWAMOTO Y, FUJITA M, et al.Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals[J]. Optics express, 2013, 21(17): 20111.
[28] SREENILAYAM S P, MCCARTHY É, FLEISCHER K, et al.Photonic crystals-based light-trapping approach in solar cells[M]. Amsterdam: Elsevier, 2020: 337-345.
[29] TAVAKOLI DASTJERDI H, PROCHOWICZ D, YADAV P, et al.Tuning areal density and surface passivation of ZnO nanowire array enable efficient PbS QDs solar cells with enhanced current density[J]. Advanced materials interfaces, 2020, 7(1): 1-9.
[30] MANN S A, GROTE R R, OSGOOD R M, et al.Dielectric particle and void resonators for thin film solar cell textures[J]. Optics express, 2011, 19(25): 25729-25740.
[31] MIHI A, BERNECHEA M, KUFER D, et al.Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells[J]. Advanced optical materials, 2013, 1(2): 139-143.
[32] ENRICHI F, QUANDT A, RIGHINI G C.Plasmonic enhanced solar cells: summary of possible strategies and recent results[J]. Renewable and sustainable energy reviews, 2018, 82: 2433-2439.
[33] UENO K, OSHIKIRI T, SUN Q, et al.Solid-state plasmonic solar cells[J]. Chemical reviews, 2018, 118(6): 2955-2993.
[34] STRATAKIS E, KYMAKIS E.Nanoparticle-based plasmonic organic photovoltaic devices[J]. Materials today, 2013, 16(4): 133-146.
[35] HONG J, KIM B S, HOU B, et al.Plasmonic effects of dual-metal nanoparticle layers for high-performance quantum dot solar cells[J]. Plasmonics, 2020, 15(4): 1007-1013.
[36] CHEN S, WANG Y J, LIU Q P, et al.Broadband enhancement of PbS quantum dot solar cells by the synergistic effect of plasmonic gold nanobipyramids and nanospheres[J]. Advanced energy materials, 2018, 8(8): 1-9.
[37] SHA W E I, ZHU H L, CHEN L Z, et al. A general design rule to manipulate photocarrier transport path in solar cells and its realization by the plasmonic-electrical effect[J]. Scientific reports, 2015, 5(1): 1-8.
[38] LUK’YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature materials, 2010, 9(9): 707-715.
[39] ELLINGSON R J, BEARD M C, JOHNSON J C, et al.Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano letters, 2005, 5(5): 865-871.
[40] DE WEERD C, GOMEZ L, CAPRETTI A, et al.Efficient carrier multiplication in CsPbI3 perovskite nanocrystals[J]. Nature communications, 2018, 9(1): 1-3.
[41] SMITH C, BINKS D.Multiple exciton generation in colloidal nanocrystals[J]. Nanomaterials, 2013, 4(1): 19-45.
[42] BEARD M C.Multiple exciton generation in semiconductor quantum dots[J]. Journal of physical chemistry letters, 2011, 2(11): 1282-1288.
[43] ŽÍDEK K, ZHENG K B, ABDELLAH M, et al. Ultrafast dynamics of multiple exciton harvesting in the CdSe-ZnO system: electron injection versus Auger recombination[J]. Nano letters, 2012, 12(12): 6393-6399.
[44] CONIBEER G, SHRESTHA S, HUANG S, et al.Hot carrier solar cell absorber prerequisites and candidate material systems[J]. Solar energy materials and solar cells, 2015, 135: 124-129.
[45] KAHMANN S, LOI M A.Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limit[J]. Journal of materials chemistry C, 2019, 7(9): 2471-2486.
[46] SINGHAL P, GHOSH H N.Hot charge carrier extraction from semiconductor quantum dots[J]. Journal of physical chemistry C, 2018, 122(31): 17586-17600.
[47] RICHARDS B S.Luminescent layers for enhanced silicon solar cell performance: down-conversion[J]. Solar energy materials and solar cells, 2006, 90(9): 1189-1207.
[48] LIU J F, YAO Q H, LI Y D.Effects of downconversion luminescent film in dye-sensitized solar cells[J]. Applied physics letters, 2006, 88(17): 2-5.
[49] WU N, LUO Q, QIAO X S, et al.The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics[J]. Materials research express, 2015, 2(12): 125901.
[50] JIANG L, CHEN W C, ZHENG J W, et al.Enhancing the photovoltaic performance of perovskite solar cells with a down-conversion eu-Complex[J]. ACS applied materials and interfaces, 2017, 9(32): 26958-26964.
[51] EHRLER B, YANAI N, NIENHAUS L.Up-and down-conversion in molecules and materials[J]. Journal of chemical physics, 2021, 154(7): 070401.
[52] SPITZER M B, JENSSEN H P, CASSANHO A.An approach to downconversion solar cells[J]. Solar energy materials and solar cells, 2013, 108: 241-245.
[53] DE LA MORA M B, AMELINES-SARRIA O, MONROY B M, et al. Materials for downconversion in solar cells: perspectives and challenges[J]. Solar energy materials and solar cells, 2017, 165: 59-71.
[54] NAZIM M, KIM B W, LEE S W, et al.UV-curable polymer-QD flexible films as the downconversion layer for improved performance of Cu(In, Ga)Se2 solar cells[J]. Energy and fuels, 2020, 34(11): 14581-14590.
[55] VAN SARK W G J H M, DE WILD J, et al. Upconversion in solar cells[J]. Nanoscale research letters, 2013, 8(1): 1-10.
[56] SCHEPS R.Upconversion laser processes[J]. Progress in quantum electronics, 1996, 20(4): 271-358.
[57] GOLDSCHMIDT J C, FISCHER S.Upconversion for photovoltaics-a review of materials, devices and concepts for performance enhancement[J]. Advanced optical materials, 2015, 3(4): 510-535.
[58] ANSARI A A, NAZEERUDDIN M K, TAVAKOLI M M.Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells[J]. Coordination chemistry reviews, 2021, 436: 213805.
[59] HAKIM F, ALAM M K.Performance enhancement of bulk heterojunction organic solar cells using photon upconverter[J]. Solar energy, 2019, 191: 300-310.
[60] CHEN X, XU W, SONG H W, et al.Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application[J]. ACS applied materials and interfaces, 2016, 8(14): 9071-9079.
[61] IVATURI A, UPADHYAYA H.Upconversion and downconversion processes for photovoltaics[M]. London: Elsevier, 2018: 279-298.
[62] PAN A C, DEL CAÑIZO C, CÁNOVAS E, et al. Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots[J]. Solar energy materials and solar cells, 2010, 94(11): 1923-1926.
[63] BEERY D, WHEELER J P, ARCIDIACONO A, et al.CdSe quantum dot sensitized molecular photon upconversion solar cells[J]. ACS applied energy materials, 2020, 3(1): 29-37.
[64] LAI X S, LI X T, LYU X D, et al.Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells[J]. Journal of power sources, 2017, 372: 125-133.
[65] KINOSHITA M, SASAKI Y, AMEMORI S, et al.Photon upconverting solid films with improved efficiency for endowing perovskite solar cells with near-infrared sensitivity[J]. ChemPhotoChem, 2020, 4(11): 5271-5278.
[66] SCHULZE T, LIPS K, SCHMIDT T W.Enhancing solar cells with photochemical upconversion[J]. SPIE newsroom, 2014(process 5): 10-12.
[67] RAMIRO I, MARTÍ A.Intermediate band solar cells: present and future[J]. Progress in photovoltaics: research and applications, 2021, 29(7): 705-713.
[68] LUQUE A, MARTÍ A, STANLEY C, et al.General equivalent circuit for intermediate band devices: potentials, currents and electroluminescence[J]. Journal of applied physics, 2004, 96(1): 903-909.
[69] HOSOKAWA H, TAMAKI R, SAWADA T, et al.Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites[J]. Nature communications, 2019, 10(1): 4-6.
[70] MCMEEKIN D P, MAHESH S, NOEL N K, et al.Solution-processed all-perovskite multi-junction solar cells[J]. Joule, 2019, 3(2): 387-401.
[71] JOŠT M, KEGELMANN L, KORTE L, et al. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency[J]. Advanced energy materials, 2020, 10(26): 1904102.

基金

国家自然科学基金(51906013); 北京建筑大学金字塔人才培养工程建大英才项目(JDYC20200316)

PDF(1712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/