采用热重分析(TG)分析沼渣的热解特性,研究沼渣的热解动力学并计算指前因子A、焓变ΔH、吉布斯自由能ΔG、熵变ΔS等热力学参数。进一步考察温度对沼渣热解产物分布与性质的影响。其热解过程可分为3个失重阶段,其中第2阶段为主要失重阶段,采用Flynn-Wall-Ozawa(FWO)法、Friedman法和Kissinger-Akahira-Sunose(KAS)法计算的平均活化能分别为410.00、471.32和420.01 kJ/mol,热力学参数计算结果表明沼渣热解过程具有稳定的能量输出。沼渣热解油的产率随温度上升先增加后降低。气体产物的高位热值(HHV)从400 ℃时的6.82 MJ/Nm3增加到700 ℃时的8.54 MJ/Nm3。红外光谱(FTIR)、拉曼(Raman)光谱表明热解温度升高生物炭结构的有序性增加。
Abstract
Pyrolysis kinetics of biogas residues were researched by FWO, Friedman and KAS methods, and its thermodynamic parameters including pre-exponential factor, enthalpy change, Gibbs free energy and entropy change, were also calculated. In addition, effects of the temperature on pyrolysis products distribution and properties were studied in a fixed-bed reactor with traditional electric heating. The pyrolysis process can be divided into three weightlessness stages, of which the second stage is the main weightlessness stage. The average activation energies calculated by Flynn-Wall-Ozawa (FWO) method, Friedman method and Kissinger-Akahira-Sunose (KAS) method is 410.00 kJ/mol, 471.32 kJ/mol and 420.01 kJ/mol, respectively, Thermodynamic parameter calculation results show that the pyrolysis process of biogas slag has stable energy output. The yield of liquid product increased first and then decreases with the increase of temperature. The high calorific value (HHV) of the gas products increases from 6.82 MJ/Nm3 at 400 ℃ to 8.54 MJ/Nm3 at 700 ℃. FTIR and Raman spectra show that the order of biochar structure increases with raising of pyrolysis temperature.
关键词
热力学 /
热解 /
动力学 /
沼渣 /
热解产物 /
产物分析
Key words
thermodynamics /
pyrolysis /
kinetics /
biogas residue /
pyrolysis product /
product analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 魏泉源. 规模化沼气工程沼液、沼渣减量化及资源化利用研究[D]. 北京: 北京化工大学, 2014.
WEI Q Y.Reduction and resource utilization of biogas residue and biogas slurry from scale biogas engineering[D]. Beijing: Beijing University of Chemical Technology, 2014.
[2] CAO Z B, JUNG D, OLSZEWJKI M P, et al.Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions[J]. Waste management, 2019, 100: 138-150.
[3] HU E F, TIAN Y S, YANG Y, et al.Pyrolysis behaviors of corn stover in new two-stage rotary kiln with baffle[J]. Analytical and applied pyrolysis, 2022, 161: 105398.
[4] ZHU Y N, WEN W, LI Y M, et al.Pyrolysis study of Huainan coal with different particle sizes using TG analysis and online Py-PI-TOF MS[J]. Journal of the Energy Institute,2020, 93(1): 405-414.
[5] NEUMANN J, BINDER S, APFELBACHER A, et al.Production and characterization of a new quality pyrolysis oil, char and syngas from digestate-Introducing the thermo-catalytic reforming process[J]. Journal of analytical and applied pyrolysis, 2015, 113: 137-142.
[6] DOUKEH R, BOMBOS M, BOMBOS D, et al.Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst[J]. Reaction kinetics, mechanisms and catalysis, 2021, 132(2): 829-838.
[7] CHANG S Q, ZHANG Z K, CAO L X, et al.Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature[J]. Energy conversion and management, 2020, 213: 112798.
[8] HE Y Y, CHANG C, LI P, et al.Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis[J]. Bioresource technology, 2018, 259: 294-303.
[9] MALLICK D, PODDAR M K, MAHANTA P, et al.Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis[J]. Bioresource technology, 2018, 261: 294-305.
[10] HU E F, DAI C Y, TIAN Y S, et al.Infrared heated pyrolysis of corn stover: Determination of kinetic and thermodynamic parameters[J]. Journal of analytical and applied pyrolysis, 2021(158): 105273.
[11] HU M, CHEN Z H, WANG S K, et al.Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy conversion and management, 2016, 118: 1-11.
[12] ABD-ELGHANY M, KLAPÖTKE T M, ELBEIH A. Investigation of 2,2,2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose(thermal behavior and decomposition kinetics)[J]. Journal of analytical and applied pyrolysis, 2017, 128: 397-404.
[13] YUAN X S, HE T, CAO H L, et al.Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods[J]. Renewable energy, 2017, 107: 489-496.
[14] KAUR R, GERA P, JHA M K, et al.Pyrolysis kinetics and thermodynamic parameters of castor(Ricinus communis) residue using thermogravimetric analysis[J]. Bioresource technology, 2018, 250: 422-428.
[15] 马中青, 张齐生. 温度对马尾松热解产物产率和特性的影响[J]. 浙江农林大学学报, 2016, 33(1): 109-115.
MA Z Q, ZHANG Q S.Pinus massoniana pyrolysis: influence of temperature on yields and product properties[J]. Journal of Zhejiang A&F University, 2016, 33(1): 109-115.
[16] PARNAUDEAU V, DIGNAC M.The organic matter composition of various wastewater sludges and their neutral detergent fractions as revealed by pyrolysis-GC/MS[J]. Journal of analytical and applied pyrolysis, 2007, 78(1): 140-152.
[17] PENG Y Y, WU S B.Fast pyrolysis characteristics of sugarcane bagasse hemicellulose[J]. Cellulose chemistry and technology,2011, 45: 605-612.
[18] ASADULLAH M, ZHANG S, MIN Z H, et al.Effects of biomass char structure on its gasification reactivity[J]. Bioresource technology, 2010, 101(20): 7935-7943.
[19] NANDA S, AZARGOHAR R, KOZINSKI J A, et al.Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks[J]. Bioenergy research, 2014, 7(1): 174-191.
[20] YU J, SUN L S, BERRUECO C, et al.Influence of temperature and particle size on structural characteristics of chars from Beechwood pyrolysis[J]. Journal of analytical and applied pyrolysis, 2018, 130: 127-134.
[21] XU Q Y, TANG S Q, WANG J C, et al.Pyrolysis kinetics of sewage sludge and its biochar characteristics[J]. Process safety and environmental protection, 2018, 115: 49-56.
[22] PHOUNGTHONG K, ZHANG H, SHAO L M, et al.Leaching characteristics and phytotoxic effects of sewage sludge biochar[J]. Journal of material cycles and waste management, 2018, 20(4): 2089-2099.
基金
国家自然科学基金(52104245); 重庆自然科学基金(cstc2021jcyj-msxmX0099); 国家现代农业产业技术体系(CARS-03-40); 重庆市留创项目(2019LY41)