对半潜浮式风力机动力特性进行研究,推导考虑黏性阻尼的动力学方程及传递函数。对黏性效应的影响及其计算方法进行探讨,对比附加阻尼矩阵法、Morison单元法的优缺点,并提出考虑黏性阻尼效应水动力计算的混合法,在此基础上对半潜浮式风力机气动-水动-锚泊全耦合动力响应进行分析。结果表明:黏性效应主要影响共振周期附近的响应值,在数值分析时不可忽略;附加阻尼矩阵法在考虑水平面内运动黏性阻尼时有所不足,且无法考虑黏性效应对共振周期的影响,Morison单元法在考虑垂荡、转动黏性阻尼时有所不足,混合法是考虑黏性阻尼水动力计算的更有效方法;该半潜浮式风力机垂荡和纵摇响应主要受波浪控制,而水平面内运动受风、浪、流联合作用的影响;浮式风力机运动和加速度的最危险工况可发生在发电工况时,最大锚链张力发生在极端环境条件时。
Abstract
The dynamic characteristics of the semi-submersible floating wind turbine are researched in this paper. The dynamic equation and the transfer function considering viscous damping are derived. The effect of viscosity on dynamic response and the calculation method of viscous damping are studied. The advantages and disadvantages of the additional damping matrix method and the Morison method are compared. And a hybrid method considering viscous damping is proposed. On this basis, the dynamic response of the semi-submersible floating wind turbine considering the full coupling of aerodynamics, hydrodynamics and mooring is analyzed. The results show that the viscous effect mainly affects the response value near the resonance period and it cannot be ignored in numerical analysis. The additional damping matrix method is insufficient when considering the viscous damping of motion in the horizontal plane and it cannot consider the effect of viscosity on the resonance period. The Morison method is deficient in calculating the heave and pitch response considering the viscous damping effect. The hybrid method is a more effective method for hydrodynamic calculations considering the viscous effect. The heave and pitch responses of the semi-submersible floating wind turbine are mainly controlled by waves, while the motion responses in the horizontal plane are affected by the combined action of wind, wave and current. The most dangerous conditions for motion and acceleration of the floating wind turbine may occur during power generation. The maximum tension of the anchor chain occurs under extreme environmental conditions.
关键词
动力响应 /
黏性 /
阻尼 /
半潜 /
浮式风力机 /
全耦合
Key words
dynamic response /
viscosity /
damping /
semi-submersible /
floating wind turbine /
fully-coupled
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MAIMON A D.Floating offshore wind turbines-technology and potential[J]. Annals of “dunarea de jos” University of Galati. Fascicle XI shipbuilding, 2020, 43: 89-94.
[2] 胡志强. 浮式风机动力响应分析关键技术综述[J]. 船舶与海洋工程, 2020, 36(6): 1-13.
HU Z Q.A review on the key technologies of dynamic response prediction of floating offshore wind turbines[J]. Naval, architecture and ocean engineering, 2020, 36(6): 1-13.
[3] KANG T W, KIM E S, YANG H I.Effects of dynamic motion and structural response of a semi-submersible floating offshore wind turbine structure under waves generated in a hurricane environment[J]. International journal of precision engineering and manufacturing-green technology, 2022, 9(2): 537-556.
[4] PHAM T D, SHIN H.The effect of the second-order wave loads on drift motion of a semi-submersible floating offshore wind turbine[J]. Journal of marine science and engineering, 2020, 8(11): 859-871.
[5] ZHANG L, SHI W, KARIMIRAD M, et al.Second-order hydrodynamic effects on the response of three semi submersible floating offshore wind turbines[J]. Ocean engineering, 2020, 207: 107371.
[6] CAO Q, XIAO L F, CHENG Z S, et al.Operational and extreme responses of a new concept of 10 MW semi-submersible wind turbine in intermediate water depth: an experimental study[J]. Ocean engineering, 2020, 217: 108003.
[7] CAO Q, XIAO L F, CHENG Z S, et al.Dynamic responses of a 10 MW semi-submersible wind turbine at an intermediate water depth: a comprehensive numerical and experimental comparison[J]. Ocean engineering, 2021, 232: 109138.
[8] LI H R, BACHYNSKI E E.Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine[J]. Renewable energy, 2021, 171: 709-727.
[9] 李欣, 张明明, 杨洪磊. 张力腿漂浮式风电机组疲劳载荷智能控制研究[J]. 太阳能学报, 2020, 41(9): 278-286.
LI X, ZHANG M M, YANG H L.Numerical investigation of smart fatigue load control on tension leg platform floating wind turbine[J]. Acta energiae solaris sinica, 2020, 41(9): 278-286.
[10] 乐丛欢, 李彦娥, 丁红岩, 等. 波浪荷载作用下海上新型潜式浮式风力机运动特性研究[J]. 太阳能学报, 2020, 41(2): 78-84.
LE C H, LI Y E, DING H Y, et al.Study on motion characteristics of a new type submerged floating wind turbine under wave load[J]. Acta energiae solaris sinica, 2020, 41(2): 78-84.
[11] CLEMENT C, KOSLECK S, LIE T.Investigation of viscous damping effect on the coupled dynamic response of a hybrid floating platform concept for offshore wind turbines[J]. Ocean engineering, 2021, 225: 108836.
[12] HALLAK T S, KARMAKAR D, SOARES C G.Hydrodynamic performance of semi-submersible FOWT combined with point-absorber WECs[C]//Proceedings of the 5th International Conference on Maritime Technology and Engineering (MARTECH 2020), Lisbon, Portugal, 2020.
[13] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2009.
[14] RODDIER D.A generic 5 MW WindFloat for numerical tool validation & comparison against a generic spar[C]//Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 2011.
[15] ORCINA LTD. Diffraction: L02 OC4 semi sub[EB/OL].2020. http://www.orcina.com/resources.
[16] IEC 61400-3-2, Wind energy generation systems-part 3-2: design requirements for floating offshore wind turbines[S]. International Electrotechnical Commission: Geneva, Switzerland, 2019.
[17] DNV-ST-0119, Floating wind turbine structures[S]. Det Norske Veritas, 2021.
[18] DNVGL-RP-0286, Couple analysis of floating wind turbiness[S]. Det Norske Veritas, 2019.
基金
国家能源集团重点科技项目(GJNY-20-17)