废油脂固体催化加氢制备生物航油的研究进展

杨玲梅, 罗文, 付俊鹰, 吕鹏梅, 王忠铭

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 423-431.

PDF(2398 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2398 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 423-431. DOI: 10.19912/j.0254-0096.tynxb.2021-1136

废油脂固体催化加氢制备生物航油的研究进展

  • 杨玲梅, 罗文, 付俊鹰, 吕鹏梅, 王忠铭
作者信息 +

REVIEW OF SOLID CATALYSIS HYDROGENATION WASTE OIL TO PRODUCE BIO-JET FUEL

  • Yang Lingmei, Luo Wen, Fu Junying, Lyu Pengmei, Wang Zhongming
Author information +
文章历史 +

摘要

综述近年来油脂固体催化加氢脱氧/异构裂解为生物航油组分的研究现状,详细介绍在油脂加氢反应中所需的金属中心和载体在反应中的作用机制及油脂加氢转化的现状和反应体系,并详细介绍固体催化剂在油脂加氢反应中的催化性能。此外,综述油脂加氢反应中加氢脱氧、加氢异构反应途径及反应机理。

Abstract

In this paper, the research status of solid catalytic hydrodeoxidization/isomerization of oil to produce bio-jet fuel in recent years is reviewed. The review also involved the effect mechanism of metallic centers, support, the interaction between active components and support on the hydrogen activity and selectivity, and introduced detailed information about the reaction system. In addition, the reaction performance, reaction route, and mechanism of waste oil for the preparation of bio aviation fuel by hydrodeoxygenation and hydroisomerization were also reviewed.

关键词

生物质能 / 加氢 / 金属中心 / 酸性载体 / 废油脂 / 生物航油

Key words

biomass energy / hydrogenation / metallic center / acidic carrier / waste oil / bio-jet fuel

引用本文

导出引用
杨玲梅, 罗文, 付俊鹰, 吕鹏梅, 王忠铭. 废油脂固体催化加氢制备生物航油的研究进展[J]. 太阳能学报. 2022, 43(12): 423-431 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1136
Yang Lingmei, Luo Wen, Fu Junying, Lyu Pengmei, Wang Zhongming. REVIEW OF SOLID CATALYSIS HYDROGENATION WASTE OIL TO PRODUCE BIO-JET FUEL[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 423-431 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1136
中图分类号: D480.10   

参考文献

[1] MANEERUNG T, KAWI S, DAI Y, et al.Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure[J]. Energy conversion and management, 2016, 123: 487-497.
[2] FONSECA J M,TELEKEN J G,CINQUE A D E, et al. Biodiesel from waste frying oils: methods of production and purification[J]. Energy conversion and management, 2019, 184: 205-218.
[3] NAIK S N, GOUD V V,ROUT P K,et al.Production of first and second generation biofuels: a comprehensive review[J]. Renewable and sustainable energy reviews, 2010, 14(2): 578-597.
[4] BLAKEY S, RYE L, WILSON C W.Aviation gas turbine alternative fuels: a review[J] Proceedings of the combustion institute, 2011, 33(2): 2863-2885.
[5] LEE E, YUN S, PARK Y K, et al.Selective hydroisomerization of n-dodecane over platinum supported on SAPO-11[J]. Journal of industrial and engineering chemistry, 2014, 20(3): 775-780.
[6] SANNA A, VISPUTE T P, HUBER G W.Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts[J]. Applied catalysis B: environmental, 2015, 165: 446-456.
[7] LI J, WANG S, LIU H Y, et al.Effective hydrodeoxygenation of stearic acid and cyperus esculentus oil into liquid alkanes over nitrogen-modified carbon nanotube-supported ruthenium catalysts[J]. Chemistry select, 2017, 2(1): 33-41.
[8] THUNYARATCHATANON C, LUENGNARUEMITCHAI A, CHOLLACOOP N, et al.Catalytic upgrading of soybean oil methyl esters by partial hydrogenation using Pd catalysts[J]. Fuel, 2016, 163: 8-16.
[9] SNARE M, KUBIČKOVÁ I, MÄKI-ARVELA P, et al. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel[J]. Industrial & engineering chemistry research, 2006, 45(16): 5708-5715.
[10] RABAEV M, LANDAU M V, VIDRUK-NEHEMYA R, et al.Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics[J]. Fuel, 2015, 161: 287-294.
[11] HAN J X, SUN H, DING Y Q, et al.Palladium-catalyzed decarboxylation of higher aliphatic esters: towards a new protocol to the second generation biodiesel production[J]. Green chemistry, 2010, 12(3): 463-467.
[12] 程军, 张曦, 刘建峰, 等. 镍基介孔Y催化微藻生物柴油制航空燃油[J]. 太阳能学报, 2020, 41(5): 230-234.
CHENG J, ZHANG X, LIU J F, et al.Catalytic hydroprocessing of microalgae biodiesel to renewable jet fuels over Ni/meso-Y difunctional catalyst[J]. Acta energiae solaris sinica, 2020, 41(5): 230-234.
[13] KUBIČKA D, KALUŽA L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts[J]. Applied catalysis A: general, 2010, 372(2): 199-208.
[14] ZHANG H P, LIN H F, ZHENG Y. The role of cobalt and nickel in deoxygenation of vegetable oils[J]. Applied catalysis B: environmental, 2014, 160-161: 415-422.
[15] KALUŽA L, KUBIČKA D. The comparison of Co, Ni, Mo, CoMo and NiMo sulfided catalysts in rapeseed oil hydrodeoxygenation[J]. Reaction kinetics, mechanisms and catalysis, 2017, 122(1): 333-341.
[16] KUBIČKA D, HORÁČEK J, SETNIČKA M, et al. Effect of support-active phase interactions on the catalyst activity and selectivity in deoxygenation of triglycerides[J]. Applied catalysis B: environmental, 2014, 145: 101-107.
[17] MA B, ZHAO C.High-grade diesel production by hydrodeoxygenation of palm oil over a hierarchically structured Ni/HBEA catalyst[J]. Green chemistry, 2015, 17(3): 1692-1701.
[18] CHENG J, LI T, HUANG R, et al.Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality[J]. Bioresource technology, 2014, 158: 378-382.
[19] SHI Y, CAO Y, DUAN Y, et al.Upgrading of palmitic acid to iso-alkanes over bi-functional Mo/ZSM-22 catalysts[J]. Green chemistry, 2016, 18(17): 4633-4648.
[20] XIA W S, HOU Y H,CHANG G,et al.Partial oxidation of methane into syngas(H2+CO) over effective high-dispersed Ni/SiO2 catalysts synthesized by a sol-gel method[J]. International journal of hydrogen energy, 2012, 37(10): 8343-8353.
[21] REN J, CAO J P, ZHAO X Y, et al.Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles[J]. Fuel, 2017, 202: 345-351.
[22] SONG W, ZHAO C, LERCHER J A.Importance of size and distribution of Ni nanoparticles for the hydrodeoxygenation of microalgae oil[J]. Chemistry-a European journal, 2013, 19(30): 9833-9842.
[23] PING E W, WALLACE R, PIERSON J, et al.Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid[J]. Microporous and mesoporous materials, 2010, 132(1): 174-180.
[24] ESCOLA J M, SERRANO D P, AGUADO J,et al.Hydroreforming of the LDPE thermal cracking oil over hierarchical Ni/Beta catalysts with different Ni particle size distributions[J]. Industrial & engineering chemistry research, 2015, 54(26): 6660-6668.
[25] SANTILLAN-JIMENEZ E, MORGAN T,LACNY J, et al.Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over carbon-supported nickel[J]. Fuel, 2013, 103: 1010-1017.
[26] CHEN L, FU J, YANG L, et al.Catalytic hydrotreatment of fatty acid methyl esters to diesel-like alkanes over Hβ zeolite-supported nickel catalysts[J]. ChemCatChem, 2014, 6(12): 3482-3492.
[27] JIANG T, WANG T J, MA L L, et al.Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts[J]. Applied energy, 2012, 90(1): 51-57.
[28] NUMWONG N, LUENGNARUEMITCHAI A, CHOLLACOOP N, et al. Effect of SiO2 pore size on partial hydrogenation of rapeseed oil-derived FAMEs[J]. Applied catalysis A: general, 2012, 441-442: 72-78.
[29] SHOMCHOAM B, YOOSUK B.Eco-friendly lubricant by partial hydrogenation of palm oil over Pd/γ-Al2O3 catalyst[J]. Industrial crops and products, 2014, 62: 395-399.
[30] IIDA H, ITOH D, MINOWA S,et al.Hydrogenation of soybean oil over various platinum catalysts: effects of support materials on trans fatty acid levels[J]. Catalysis communications, 2015, 62: 1-5.
[31] NOHAIR B, ESPECEL C, LAFAYE G, et al.Palladium supported catalysts for the selective hydrogenation of sunflower oil[J]. Journal of molecular catalysis A: chemical, 2005, 229(1-2): 117-126.
[32] PENG B X, ZHAO C, KASAKOV S, et al.Manipulating catalytic pathways: deoxygenation of palmitic acid on multifunctional catalysts[J]. Chemistry-A European journal, 2013, 19(15): 4732-4741.
[33] HU Y F, WANG X S, GUO X W, et al.Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts[J]. Catalysis letters, 2005, 100(1): 59-65.
[34] VERMA D, RANA B S, KUMAR R, et al.Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11[J]. Applied catalysis A: general, 2015, 490: 108-116.
[35] XING G H, LIU S Y, GUAN Q X, et al.Investigation on hydroisomerization and hydrocracking of C15-C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis today, 2018, 336: 109-116.
[36] COONRADT H L, GARWOOD W E.Mechanism of hydrocracking reactions of paraffins and olefins[J]. Industrial & engineering chemistry research, 1964, 3: 38-45.
[37] 林励吾, 张馥良. 中国科学院化学物理研究所研究报刊第1集[M]. 北京: 科学出版社, 1964.
LIN L W, ZHANG F L.Journal of institute of chemical physics, Chinese academy of sciences, episode 1[M]. Beijing: Science Press, 1964.
[38] LIN L W, LIANG D B, WANG Q X, et al.Research and development of catalytic processes for petroleum and natural gas conversions in the Dalian Institute of Chemical Physics[J]. Catalysis today, 1999, 51(1): 59-72.
[39] GALPERIN L B, BRADLEY S A, MEZZA T M.Hydroisomerization of n-decane in the presence of sulfur: effect of metal-acid balance and metal location[J]. Applied catalysis A: general, 2001, 219(1-2): 79-88.
[40] CHEN X Y, JIA M, LIU G Z, et al.Catalytic performance of grafted Al-MCM-41 in hydroisomerization of n-dodecane[J]. Applied surface science, 2010, 256(20): 5856-5861.
[41] LIU S Y, REN J, ZHU S J, et al.Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. Journal of catalysis, 2015, 330: 485-496.
[42] LESTARI S, SIMAKOVA I, TOKAREV A, et al.Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst[J]. Catalysis letters, 2008, 122(3): 247-251.
[43] PENG B X, YAO Y, ZHAO C, et al.Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts[J]. Angewandte chemie international edition, 2012, 51(9): 2072-2075.
[44] XING S Y, LYU P M, WANG J Y, et al.One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways[J]. Physical chemistry chemical physics, 2017, 19(4): 2961-2973.
[45] LI M, XING S Y, YANG L M, et al.Nickel-loaded ZSM-5 catalysed hydrogenation of oleic acid: the game between acid sites and metal centres[J]. Applied catalysis A: general, 2019, 587: 117112.
[46] ZHAO S, LI M F, CHU Y, et al.Hydroconversion of methyl laurate as a model compound to hydrocarbons on bifunctional Ni2P/SAPO-11: simultaneous comparison with the performance of Ni/SAPO-11[J]. Energy fuels, 2014, 28(11): 7122-7132.
[47] YANG L M, XING S Y, SUN H Z, et al.Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes[J]. Fuel processing technology, 2019, 187: 52-62.
[48] LI X Y, CHEN Y B, HAO Y J, et al.Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology[J]. Renewable energy, 2019, 139: 551-559.
[49] BATALHA N, PINARD L, BOUCHY C, et al.n-hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. Journal of catalysis, 2013, 307: 122-131.
[50] OZAKI A, KIMURA K.The effective site on acid catalysts revealed in n-butene isomerization[J]. Journal of catalysis, 1964, 3(5): 395-405.
[51] WEITKAMP J, JACOBS P A, MARTENS J A.Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite[J]. Applied catalysis, 1983, 8(1): 123-141.
[52] WEISZ P B, SWEGLER E W.Stepwise reaction on separate catalytic centers: isomerization of saturated hydrocarbons[J]. Science, 1957, 126(3262): 31-32.
[53] SIE S T.Acid-catalyzed cracking of paraffinic hydrocarbons. 3. Evidence for the protonated cyclopropane mechanism from hydrocracking/hydroisomerization experiments[J]. Industrial & engineering chemistry research, 1993, 32: 403-408.
[54] 张淼. ZSM-48分子筛的合成、改性及十六烷加氢异构性能[D]. 大连: 大连理工大学, 2017.
ZHANG M.Synthesis and modification of ZSM-48 zeolitess and their performance for hydroisomerization of hexadecane[D]. Dalian: Dalian University of Technology, 2017.
[55] CLAUDE M C, MARTENS J A.Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of catalysis, 2000, 190(1): 39-48.

基金

国家自然科学基金(51806225); 国家重点研发计划(2019YFB1504003)

PDF(2398 KB)

Accesses

Citation

Detail

段落导航
相关文章

/