太阳能斯特林混凝土储热系统传热特性研究

张欣宇, 杨晓宏, 曹泽宇, 张燕楠, 田瑞, 张爽

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 213-219.

PDF(2149 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2149 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 213-219. DOI: 10.19912/j.0254-0096.tynxb.2021-1142

太阳能斯特林混凝土储热系统传热特性研究

  • 张欣宇1, 杨晓宏1,2, 曹泽宇1, 张燕楠1, 田瑞1,3, 张爽1
作者信息 +

HEAT TRANSFER PERFORMANCE OF CONCRETE THERMAL STORAGE SYSTEM FOR SOLAR ENERGY STRILING

  • Zhang Xinyu1, Yang Xiaohong1,2, Cao Zeyu1, Zhang Yannan1, Tian Rui1,3, Zhang Shuang1
Author information +
文章历史 +

摘要

设计碟式太阳能斯特林机混凝土储热系统,并对熔融盐及混凝土传热过程进行理论分析,对混凝土储释热过程进行模拟,运用多目标遗传算法进行优化,得到以下结论:在释热过程,选取290 ℃为流体出口的有效温度临界值,有效释热时间约2.1 h时,流体出口温度约为563 K,释热效率约为71%;高温混凝土和熔融盐沿着流程方向均存在一个温跃层区域,随着时间的延长,温跃层沿着流程方向逐渐向下游偏移,当温跃层移动到出口处时,熔融盐出口温度开始下降,温跃层占据的长度越小,储热系统效率越高;随着导热系数的增加,释热效率及有效释热时间提高。通过TOPSIS对解集进行重新排序分析,最优工况是蓄热量为2885 MJ、换热系数为672 W/(m·K)及储热效率为87%。

Abstract

The concrete heat storage system of the solar dish type Stirling machine is designed, the molten salt and concrete heat transfer process are theoretically analyzed, the concrete heat storage and release process is simulated, and the multi-objective genetic algorithm is used for optimization. The following conclusions are obtained. In the heat release process, 290 ℃ is selected as the critical value of the effective temperature of the fluid outlet. When the effective heat release time is about 2.1 h, the outlet temperature of the fluid is about 563 K, and the heat release efficiency is about 71%. High temperature concrete and molten salt have a thermocline area along the direction of the process. With the extension of time, the thermocline also gradually moves downstream along the direction of the process. When the thermocline moves to the outlet, the outlet temperature of molten salt begins decreasing and the shorter the length of the thermocline is, the higher the efficiency of the heat storage system is. With the increase of thermal conductivity, the heat release efficiency and effective heat release time increase. The solution set was reordered by TOPSIS, and the optimal conditions were heat storage of 2885 MJ, heat transfer coefficient of 672 W/(m·K) and heat storage rate of 87%.

关键词

碟式太阳能聚光系统 / 斯特林机 / 混凝土 / 储释热 / 储热 / 温跃层

Key words

disk solar concentrator system / Striling / concrete / heat storage / heat storage / thermocline region

引用本文

导出引用
张欣宇, 杨晓宏, 曹泽宇, 张燕楠, 田瑞, 张爽. 太阳能斯特林混凝土储热系统传热特性研究[J]. 太阳能学报. 2022, 43(5): 213-219 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1142
Zhang Xinyu, Yang Xiaohong, Cao Zeyu, Zhang Yannan, Tian Rui, Zhang Shuang. HEAT TRANSFER PERFORMANCE OF CONCRETE THERMAL STORAGE SYSTEM FOR SOLAR ENERGY STRILING[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 213-219 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1142
中图分类号: TK512   

参考文献

[1] BAHAROON D A, RAHMAN H A, OMAR W Z W, et al. Historical development of concentrating solar power technologies to generate clean electricity efficiently-A review[J]. Renewable and sustainable energy reviews, 2015, 41(1): 996-1027.
[2] PALACIOS A, BARRENECHE C, NAVARRO M E, et al.Thermal energy storage technologies for concentrated solar power-A review from a materials perspective[J]. Renewable energy, 2020, 156(8): 1244-1265.
[3] SETTINO J, SANT T, MICALLEF C.Overview of solar technologies for electricity heating and cooling production[J]. Renewable and sustainable energy reviews, 2018, 90(7): 892-909.
[4] SCHOENEBERGER C, MCMILLAN C, KURUP P, et al.Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States[J]. Energy, 2020, 206(9): 1-18.
[5] ANDRAKA C E, KRUIZENGA B A, HERNANDEZ-SANCHEZ E N, et al. Metallic phase change material thermal storage for dish stirling[J]. Energy procedia, 2015, 69(5): 726-736.
[6] PRASAD L, MUTHUKUMAR P.Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application[J]. Solar energy, 2013, 97(11): 217-229.
[7] TAMME R, LAING D, STEINMANN W D.Advanced thermal energy storage technology for parabolic trough[J]. Journal of solar energy engineering, 2004, 126: 794-800.
[8] LAING D, BAHL C, BAUER T, et al.Thermal energy storage for direct steam generation[J]. Solar energy, 2011, 85: 627-633.
[9] RAO C R C, NIYAS H, MUTHUKUMAR P. Performance tests on lab-scale sensible heat storage prototypes[J]. Applied thermal engineering, 2018, 129(1): 953-967.
[10] XU B, HAN J X, KUMAR A, et al.Thermal storage using sand saturated by thermal-conductive fluid and comparison with the use of concrete[J]. Journal of energy storage, 2017, 13(10): 85-95.
[11] 赵研. 太阳能地下混凝土存释热试验研究与数值模拟[D]. 长春: 吉林大学, 2011: 15-25.
ZHAO Y.Numerieal Simulation and experimental researeh on solar energy storage and extraetion of underground conerete pile[D]. Changchun: Jilin University, 2011: 15-25.
[12] ALONSO M C, VERA-AGULLO J, GUERREIRO L.Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants[J]. Cement and concrete research, 2016, 82(4): 74-86.
[13] WANG G, LIU Z J, JIANG T L.Impact evaluation of cold heat transfer fluid temperature on heat storage and mechanical behaviours of an energy storage system usingphase-change material[J]. International journal of thermophysics, 2021, 42(5): 1-18.
[14] 吴明, 李明佳, 何雅玲, 等. 太阳能热发电用高温混凝土储热系统性能分析[J]. 西安交通大学学报, 2013, 47(5): 1-5.
WU M, LI M J, HE Y L, et al.Thermal performance of high temperature concrete thermal storage system for solar thermal power generation[J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 1-5.
[15] MCGLEN R J, JACHUCK R, LIN S.Integrated thermal management techniques for high power electronic devices[J]. Applied thermal engineering, 2003, 24(8): 1143.

基金

内蒙古自治区研究生科研创新项目(BZ2020030); 国家自然科学基金(51866011)

PDF(2149 KB)

Accesses

Citation

Detail

段落导航
相关文章

/