针对恒转速运行时,大型风电机组承受的不平衡载荷问题,提出一种多输入多输出的风电机组模型预测(MPC)独立变桨控制策略。首先,建立风电机组旋转坐标系下的状态空间模型,经过坐标变换得到固定坐标系下的平均周期模型,分析表明模型在非对角存在无法忽视的耦合;然后,计算所需观测器和控制器的参数,进一步设计基于Kalman状态观测器的多输入与多输出的模型预测独立变桨控制器;最后,分析NREL 5 MW风电机组平台在湍流风作用下集中变桨、传统独立变桨以及模型预测独立变桨控制策略的载荷特性与运行特性。结果表明,与传统的PI独立变桨控制相比,多输入多输出模型预测独立变桨控制器具有更好的降载效果,且不会引起功率波动。
Abstract
Aiming at the problem of unbalanced load borne by large-scale wind turbines during constant speed operation, a model predictive control (MPC) individual pitch control strategy for wind turbines with multiple inputs and multiple outputs is proposed. First, establish the state space model of the wind turbine in the rotating coordinate system, and obtain the average period model in the fixed coordinate system through coordinate transformation. The analysis result shows that the model has a non-diagonal coupling that cannot be ignored; Then calculate the required observer and controller parameters, and further design the multi-input and multi-output model prediction individual pitch controller based on the Kalman state observer. The input and multi-output model predicts the individual pitch controller; Finally, the load characteristics and operating characteristics of the NREL 5 MW wind turbine platform under the action of turbulent wind are analyzed for the centralized pitch, the traditional individual pitch, and the model-predicted individual pitch control strategy. The results show that compared with the traditional PI individual pitch control, the MIMO model predictive individual pitch controller has a better load reduction effect without causing power fluctuations.
关键词
风电机组 /
独立变桨控制 /
模型预测控制 /
坐标变换 /
载荷控制
Key words
wind turbines /
individual pitch control /
model predictive control /
coordinate transformation /
load mitigation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 应有, 许国东.基于载荷优化的风电机组变桨控制技术研究[J]. 机械工程学报, 2011, 47(16): 106-111, 119.
YING Y, XU G D.Development of pitch control for load reduction on wind turbines[J]. Journal of mechanical engineering, 2011, 47(16): 106-111, 119.
[2] BOSSANYI E A.Wind turbine control for load reduction[J]. Wind energy, 2003, 6(3): 229-244.
[3] 李辉, 杨超, 胡姚刚, 等. 抑制风力机疲劳载荷的直接比例谐振独立变桨控制策略[J]. 电力自动化设备, 2016, 36(3): 79-85.
LI H, YANG C, HU Y G, et al. Direct PR individual pitch control for wind turbine fatigue load mitigation[J]. Electric power automation equipment, 2016, 36(3): 79-85.
[4] 杨超, 李辉, 胡姚刚, 等. 叶轮不平衡下的风力机自适应独立变桨控制策略[J]. 电力系统自动化, 2015, 39(15): 35-41.
YANG C, LI H, HU Y G, et al. An adaptive individual pitch control strategy of wind turbines with unbalanced rotor[J]. Automation of electric power systems, 2015, 39(15): 35-41.
[5] LIO H W.Blade-pitch control for wind turbine load reductions[M]. Springer: Springer International Publishing 2018.
[6] 邢作霞, 陈雷, 孙宏利, 等. 独立变桨距控制策略研究[J]. 中国电机工程学报, 2011, 31(26): 131-138.
XING Z X, CHEN L, SUN H L, et al. Strategies study of individual variable pitch control[J]. Proceedings of the CSEE, 2011, 31(26): 131-138.
[7] VLAHO P A, MATE J B, MATO B A.Advanced control algorithms for reduction of wind turbine structural loads[J]. Renewable energy, 2015, 76: 418-431.
[8] LU Q, BOWYER R, JONES B L.Analysis and design of Coleman transform-based individual pitch controllers for wind-turbine load reduction[J]. Wind energy, 2014, 18(8): 1451-1468.
[9] PAN T L, MA Z X.Wind turbine individual pitch control for load reduction based on fuzzy controller design[J]. Proceedings of the institution of mechanical engineers, Part I: Journal of systems and control engineering, 2013, 227(3): 320-328.
[10] 曾冰, 黄凌翔, 彭郎军,等. 基于鲸鱼群算法的PID独立变桨控制参数整定方法[J]. 船舶工程, 2020(S1): 550-553, 557.
ZENG B, HUANG L X, PENG L J, et al. Parameter tuning method of pid individual pitch control based on whale swarm algorithm[J]. Ship engineering, 2020(S1): 550-553, 557.
[11] YUAN Y, CHEN X, TANG J.Multivariable robust blade pitch control design to reject periodic loads on wind turbines[J]. Renewable energy, 2020, 146: 329-341.
[12] 田艳丰, 王哲, 张纯明.大型风电机组多变量LQG最优独立变桨距控制[J]. 太阳能学报, 2012, 33(11): 174-179.
TIAN Y F, WANG Z, ZHANG C M.Multivariable LOG optimal individual pitch control of large-scale wind turbine[J]. Acta energiae solaris sinica, 2012, 33(11): 174-179.
[13] WANG Lp.Model predictive control: design and implementation using Matlab (T-3)[C]//Proceedings of the American Control Conference, St.Louis, MO, USA 2009: 25-26.
[14] 陈虹.模型预测控制[M]. 北京: 科学出版社, 2013.
CHEN H.Model predictive control[M]. Beijing: Science Press, 2013.
[15] LAKS J H.Preview scheduled model predictive control for horizontal axis wind turbines[D]. Dissertations & Theses - Gradworks, 2013.
[16] PETROVIC V, PERIC N.Identification of wind turbine mathematical model suitable for advanced controller design[C]//Proceedings of the 35th International Convention MIPRO, Opatija, Croatia, 2012: 835-840.
[17] WRIGHT A D, FINGERSH L J.Advanced control design for wind turbines; Part I: control design, implementation, and initial tests[R]. Office of Scientific & Technical Information Technical Reports, 2008.
[18] GREWAL M S, ANDREWS A P.Kalman filtering: theory and practice using MATLAB[M]. New York: John Wiley & Sons, 2001.
[19] JONKMAN J M, BUHL M L.FAST user’s guide[R]. Technical Report,NREL/EL 500-38230, 2005.
[20] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. Office of Scientific & Technical Information Technical Reports, 2009.
基金
国家重点研发计划(2018YFB1501304)