为提升同步整流型Boost拓扑在轻载条件下的效率,采用变频准方波模式(QSW-ZVS)代替恒频三角波模式(TCM)。借助氮化镓(GaN)器件,可进一步提高变换器的工作频率,提升功率密度。为确保高频工况下的软开关实现,对QSW-ZVS模式下的软开关过程进行精确数学建模。在此基础上,指出延长同步整流的时间可扩大软开关的实现范围,这有助于提高变换器在高频QSW-ZVS模式下的效率。最后,搭建一台额定功率为500 W的实验样机,通过实现其QSW-ZVS模式下的软开关,峰值效率达到98.2%,实现了高频高效的设计目标,验证了理论分析的准确性和正确性。
Abstract
In order to improve the efficiency of the Synchronous rectification Boost topology under light load conditions, quasi-square wave mode with soft switching(QSW-ZVS) is used instead of the triangular current mode(TCM). With the help of gallium nitride(GaN) devices, the operating frequency of the converter can be further increased, and the power density can be improved. In order to ensure the realization of soft switching under high frequency conditions, this paper carries out precise mathematical modeling of the soft switching in QSW-ZVS mode. On this basis, it is pointed out that the realization range of soft switching can be extended by extending the time of synchronous rectification. This helps to improve the efficiency of QSW-ZVS mode under high frequency conditions. Finally, an experimental prototype with a rated power of 500 W is built. By realizing its soft switching in QSW-ZVS mode, the peak efficiency reaches 98.2%. The design goals of high frequency and high efficiency are achieved, which verifies the accuracy and correctness of the theoretical analysis.
关键词
微电网 /
Boost变换器 /
氮化镓 /
同步整流 /
准方波
Key words
microgrid /
Boost converter /
gallium nitride /
synchronous rectification /
quasi-square-wave
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 6-33.
LIU L, CAO X, ZHANG X H, et al.Overview of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta aeronautica et astronautica sinica, 2020, 41(3): 6-33.
[2] 焦黎明, 徐伟强. 太阳能/氢能长航时无人机重量能量耦合分析[J]. 太阳能学报, 2020, 41(2): 152-157.
JIAO L M, XU W Q.Weight energy coupling analysis for solar hydrogen long-endurance UAV[J]. Acta energiae solaris sinica, 2020, 41(2): 152-157.
[3] 李洪珠, 刘飞扬, 刘艳, 等. 一种新型磁集成高增益耦合电感倍压Boost变换器[J]. 电工技术学报, 2020, 35(S2): 450-460.
LI H Z, LIU F Y, LIU Y, et al.A new type of magnetic integrated high-gain coupled inductor voltage doubler Boost converter[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 450-460.
[4] 肖龙, 伍梁, 李新, 等. 高频LLC变换器平面磁集成矩阵变压器的优化设计[J]. 电工技术学报, 2020, 35(4): 758-766.
XIAO L, WU L, LI X, et al.Optimal design of planar magnetic integrated matrix transformer for high frequency LLC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 758-766.
[5] 徐殿国, 管乐诗, 王懿杰, 等. 超高频功率变换器研究综述[J]. 电工技术学报, 2016, 31(19): 26-36.
XU D G, GUAN Y S, WANG Y J, et al.Review on very high frequency power converters[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 26-36.
[6] XUE F, YU R Y, GUO S X, et al.Loss analysis of GaN devices in an isolated bidirectional DC-DC converter[C]//IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications, Blacksburg, VA, USA, 2015.
[7] MACELLARI M, CELANI F, SCHIRONE L.Dead time generator for synchronous boost converters with GaN transistors[C]//IEEE International Electric Vehicle Conference, Florence, Italy, 2014.
[8] ANDRESEN M, MA K, BUTICCHI G, et al.Junction temperature control for more reliable power electronics[J]. IEEE transactions on power electronics, 2018, 33(1): 765-776.
[9] LABELLA T, YORK B, HUTCHENS C, et al.Dead time optimization through loss analysis of an active-clamp flyback converter utilizing GaN devices[C]//IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, 2012.
[10] HOFFMANN L, GAUTIER C, LEFEBVRE S, et al.Optimization of the driver of GaN power transistors through measurement of their thermal behavior[J]. IEEE transactions on power electronics, 2014, 29(5): 2359-2366.
[11] 胡超, 张兴, 石荣亮, 等. 分布式电源并联系统中基于荷电状态均衡的改进型下垂控制策略[J]. 太阳能学报, 2019, 40(3): 809-816.
HU C, ZHANG X, SHI R L, et al.Improved droop control based on state of charge balance in parallel distributed generation systems[J]. Acta energiae solaris sinica, 2019, 40(3): 809-816.
[12] 樊立萍, 童兵. 基于Boost变换器的MFC最大功率跟踪控制[J]. 太阳能学报, 2021, 42(2): 274-280.
FAN L P, TONG B.Maximum power tracking control of microbial fuel cell based on Boost convertor[J]. Acta energiae solaris sinica, 2021, 42(2): 274-280.
[13] 王海新, 沈建新, 徐建国. 基于新型智能算法对太阳能无人机光伏组件电压预测控制研究[J]. 太阳能学报, 2021, 42(4): 175-180.
WANG H X, SHEN J X, XU J G.Study on voltage prediction of UAV based on new intelligent algorithms[J]. Acta energiae solaris sinica, 2021, 42(4): 175-180.
[14] CHOI W, YOUNG S, SON D, et al.Consideration to minimize power losses in synchronous rectification[C]//8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 2011.
[15] RODRIGUEZ A, VAZQUEZ A, ROGINA M R, et al.Synchronous boost converter with high efficiency at light load using QSW-ZVS and SiC MOSFETs[J]. IEEE transactions on industrial electronics, 2018, 65(1): 386-393.
[16] HUANG X C, LEE F C, LI Q, et al.High-frequency high-efficiency GaN-based interleaved CRM bidirectional Buck/Boost converter with inverse coupled inductor[J]. IEEE transactions on power electronics, 2016, 31(6): 4343-4352.
基金
2021年天津市研究生科研创新项目(航空专项)(2021YJSO2S01)