基于逆变器直流电压模式波能装置并网接入方法

王坤林, 盛松伟, 叶寅, 王振鹏, 王文胜, 吝红军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 224-228.

PDF(5245 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5245 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 224-228. DOI: 10.19912/j.0254-0096.tynxb.2021-1175

基于逆变器直流电压模式波能装置并网接入方法

  • 王坤林, 盛松伟, 叶寅, 王振鹏, 王文胜, 吝红军
作者信息 +

GRID CONNECTION FOR MULTI HPGS IN WEC BASED ON INVERTER IN DC VOLTAGE MODE

  • Wang Kunlin, Sheng Songwei, Ye Yin, Wang Zhenpeng, Wang Wensheng, Lin Hongjun
Author information +
文章历史 +

摘要

针对采用蓄电池提供直流母线电压难于满足波能装置装机容量不断增长需求的问题,提出基于逆变器直流电压模式的多液压发电机组并网接入方法。逆变器为液压发电机组直接提供直流母线电压,组建成波能装置无蓄电池组支撑的直流纳电网。建立了逆变器直流电压模式电路拓扑和直流电压外环控制回路。通过多液压发电机组波能装置基于逆变器直流电压模式仿真试验,验证了无蓄电池组波能装置并网接入方法的可行性。该研究成果已应用到500 kW“长山号”波能装置中,为大功率波能装置并网系统研究奠定了基础。

Abstract

The method of DC voltage supported by batteries is difficulty to meet the installed power increasing of wave energy converter (WEC). A grid connection method for multi hydraulic power generation set (HPGS) based on inverter in DC voltage mode is proposed. The DC voltage is supported by inverter for multi HPGSs, and DC nano grid without batteries is established in WEC. The topology of DC voltage mode of inverter and the control strategy of DC voltage outer feedback loop are established. Through the computer simulation test of multi HPGS based on inverter DC voltage mode, the feasibility of grid connection method of multi HPGS without batteries is verified. The research results have been applied to the 500 kW “Chang Shan Hao” WEC, which lays a foundation for the grid connection system of high power WEC.

关键词

波能装置 / 蓄电池组 / 直流纳电网 / 直流电压源模式 / 液压发电机组

Key words

wave energy converter / batteries / DC nano grid / DC voltage mode / hydraulic power generation set

引用本文

导出引用
王坤林, 盛松伟, 叶寅, 王振鹏, 王文胜, 吝红军. 基于逆变器直流电压模式波能装置并网接入方法[J]. 太阳能学报. 2023, 44(2): 224-228 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1175
Wang Kunlin, Sheng Songwei, Ye Yin, Wang Zhenpeng, Wang Wensheng, Lin Hongjun. GRID CONNECTION FOR MULTI HPGS IN WEC BASED ON INVERTER IN DC VOLTAGE MODE[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 224-228 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1175
中图分类号: TM6   

参考文献

[1] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
YOU Y G, LI W, LIU W M, et al.Development status and perspective of marine energy conversion systems[J]. Automation of electric power systems, 2010, 34(14): 1-12.
[2] 程友良, 党岳, 吴英杰. 波力发电技术现状及发展趋势[J]. 应用能源技术, 2009, (12): 26-30.
CHENG Y L, DANG Y, WU Y J.Status and trends of the power generation from wave[J]. Applied energy technology, 2009, (12): 26-30.
[3] HENDERSON R.Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable energy, 2006, 31(1): 271-283.
[4] 王坤林, 田联房, 王孝洪, 等. 液压蓄能式波浪能装置发电系统的特性[J]. 华南理工大学学报(自然科学版), 2014, 42(6): 25-31.
WANG K L, TIAN L F, WANG X H, et al.Characteristics of power generation system with hydraulic energy-storage wave energy converter[J]. Journal of South China University of Technology(natural science edition), 2014, 42(6): 25-31.
[5] 叶寅, 王坤林, 张亚群, 等. 波浪能装置蓄能稳压系统数值模拟研究[J]. 太阳能学报, 2020, 41(8): 30-35.
YE Y, WANG K L, ZHANG Y Q, et al.Numerical simulation research on energy storage system of wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(8): 30-35.
[6] JOSÉ F G, MIGUEL C, MOJTABA K, et al.Design tradeoffs of an oil-hydraulic power take-off for wave energy converters[J]. Renewable energy, 2018, 129: 245-259.
[7] 王坤林, 盛松伟, 叶寅, 等. 波能装置中液压发电系统Boost变换机理及控制策略[J]. 电力系统自动化, 2017, 41(12): 173-178.
WANG K L, SHENG S W, YE Y, et al.Boost converter converting mechanism and control strategy for hydraulic power generation system in wave energy converter[J]. Automation of electric power systems, 2017, 41(12): 173-178.
[8] WANG K L, SHENG S W, ZHANG Y Q, et al.Principle and control strategy of pulse width modulation rectifier for hydraulic power generation system[J]. Renewable energy, 2019, 135: 1200-1206.
[9] SHENG S W, WANG K L, LIN H J, et al.Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan[J]. Renewable energy, 2017, 113: 587-595.
[10] 王坤林, 游亚戈, 王孝洪, 等. 直流纳电网技术在波能装置群中的应用[J]. 太阳能学报, 2017, 38(7): 1877-1884.
WANG K L, YOU Y G, WANG X H, et al.The application of DC nano grid for WECs[J]. Acta energiae solaris sinica, 2017, 38(7): 1877-1884.
[11] WANG K L, TIAN L F, YOU Y G, et al.Connection technology of HPTO type WECs and DC nano grid in Island[J]. China ocean engineering, 2016, 30(4): 581-590.
[12] 杜吉飞, 赵红雁, 郑琼林, 等. 基于直流功率控制的三相并网逆变器外环电压控制方法研究[J]. 太阳能学报, 2019, 40(9): 2622-2629.
DU J F, ZHAO H Y, ZHENG T Q, et al.Outer loop voltage control method based on DC power control of three-phase grid-connected inverter[J]. Acta energiae solaris sinica, 2019, 40(9): 2622-2629.
[13] MOHEN A B, YANG W J, ALI A.DFIM versus synchronous machine for variable speed pumped storage hydropower plants: a comparative evaluation of technical performance[J]. Renewable energy, 2020, 159: 72-86.
[14] XIN Y C, LOU W T, LI G Q, et al.AC fault ride-through coordinated control strategy of LCC-MMC hybrid DC transmission system connected to passive networks[J]. International journal of electrical power and energy systems, 2021, 131: 1-8.
[15] NEKTARIOS E K, CHRISTORS A M.High efficiency control strategy in a wind energy conversion system with doubly fed induction generator[J]. Renewable energy, 2018, 125: 974-984.
[16] CALVÁRIO M, GASPAR J F, KAMARLOUEI M, et al. Oil-hydraulic power take-off concept for an oscillating wave surge converter[J]. Renewable energy, 2020, 159: 1297-1309.

基金

科技部重点研发计划(2019YFB1504405); 三亚崖州湾科技城科研项目(SKJC-2020-01-007); 海洋可再生能源资金项目(GHME2017SF01)

PDF(5245 KB)

Accesses

Citation

Detail

段落导航
相关文章

/