多源异构信息融合光伏组件输出特性动态建模

彭乐乐, 张亚飞, 张玮东, 郑树彬, 钟倩文

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 425-434.

PDF(2420 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2420 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 425-434. DOI: 10.19912/j.0254-0096.tynxb.2021-1199

多源异构信息融合光伏组件输出特性动态建模

  • 彭乐乐1, 张亚飞1, 张玮东2, 郑树彬1, 钟倩文1
作者信息 +

DYNAMIC MODELING OF OUTPUT CHARACTERISTICS OF PHOTOVOLTAIC CELLS USING MULTI-SOURCE HETEROGENEOUS INFORMATION FUSION

  • Peng Lele1, Zhang Yafei1, Zhang Weidong2, Zheng Shubin1, Zhong Qianwen1
Author information +
文章历史 +

摘要

针对应用广泛的载体运动发电中的载体运动状态对光伏组件输出特性的影响进行研究。通过构建多源异构信息融合光伏组件输出特性动态模型,实现了光伏组件运动机械参数与输出电参数的统一,获得光伏组件最大输出功率与载体运动状态参数间的耦合关系,并采用SIMPACK构建仿真系统进行实验,证明了方法的正确性,结果显示计算值与测量值最大偏差为0.67 W,最大相对偏差率为3.23%。所提方法可为运动载体下光伏组件最大功率点动态追踪控制方法提供理论依据,有助于实现光伏高效率零碳技术发电。

Abstract

This paper studies the influence of carrier motion state on the output characteristics of photovoltaic modules. By using multi-source heterogeneous information fusion, the dynamic model of photovoltaic module output characteristics is established, and the unification of the mechanical parameters of the photovoltaic module motion and the output electrical parameters is achieved. Therefore, the coupling relationship between the maximum output power of the photovoltaic module and the parameters of the carrier motion state is obtained. In order to verify the validity of the proposed model, the simulation system is established in the SIMPACK software platform. The result shows that the maximum deviation between the calculated value and the measured value is 0.67 W, and the maximum relative deviation rate is 3.23%. The proposed model can provide a theoretical basis for the dynamic tracking control method of the maximum power point of the photovoltaic module under the moving carrier, and improve the photovoltaic conversion efficiency.

关键词

光伏发电 / 光伏组件 / 信息融合 / 输出特性 / 动态建模

Key words

photovoltaic power / photovoltaic modules / information fusion / output characteristics / dynamic models

引用本文

导出引用
彭乐乐, 张亚飞, 张玮东, 郑树彬, 钟倩文. 多源异构信息融合光伏组件输出特性动态建模[J]. 太阳能学报. 2023, 44(3): 425-434 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1199
Peng Lele, Zhang Yafei, Zhang Weidong, Zheng Shubin, Zhong Qianwen. DYNAMIC MODELING OF OUTPUT CHARACTERISTICS OF PHOTOVOLTAIC CELLS USING MULTI-SOURCE HETEROGENEOUS INFORMATION FUSION[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 425-434 https://doi.org/10.19912/j.0254-0096.tynxb.2021-1199
中图分类号: TM615   

参考文献

[1] 佟哲, 周友良. 新发展格局下中国实现碳达峰、碳中和的现状、挑战及对策[J]. 价格月刊, 2021(8): 32-37.
TONG Z, ZHOU Y L.The current situation, challenges and countermeasures of achieving emission peak and carbon neutrality in China under the new development pattern[J]. Prices monthly, 2021(8): 32-37.
[2] 白暴力, 程艳敏, 白瑞雪. 新时代中国特色社会主义生态经济理论及其实践指引——绿色低碳发展助力我国“碳达峰、碳中和”战略实施[J]. 河北经贸大学学报, 2021, 42(4): 26-36.
BAI B L, CHENG Y M, BAI R X.The ecological economic theory on socialism with Chinese characteristics for a new era and its practical guidelines——green and low-carbon development helps the implementation of China’s strategy of“peak carbon dioxide emissions, carbon neutrality”[J]. Journal of Hebei University of Economics and Business, 2021, 42(4): 26-36.
[3] 彭乐乐, 张雯柏, 郑树彬, 等. 一种环境变化下的高效率光伏组件最大功率点跟踪方法[J]. 太阳能学报, 2019, 40(5): 1262-1266.
PENG L L, ZHANG W B, ZHENG S B, et al.New maximum power point tracking method for PV system under varying environment[J]. Acta energiae solaris sinica, 2019, 40(5): 1262-1266.
[4] 王宏伦, 黄宇. 太阳能无人机能量生产估计模型及应用[J]. 战术导弹技术, 2017, 4(1): 9-16, 33.
WANG H L, HUANG Y.An integrated energy model of solar-powered unmanned aerial vehicles for predicting collected solar energy and application[J]. Tactical missile technology, 2017, 4(1): 9-16, 33.
[5] 赵懿琨, 吴宝仔, 方壮东, 等. 光伏蓄电式无线充电蓝牙遥控机器人设计[J]. 电子世界, 2017, 4(2): 65-67, 71.
ZHAO Y K, WU B Z, FANG Z D, et al.Design of wireless charging Bluetooth remote control robot based on solar energy supply[J]. Electronics world, 2017, 4(2): 65-67, 71.
[6] 赵泰祥, 廖华, 马逊, 等. 局部阴影下光伏组件的Matlab/Simulink仿真模拟与特性分析[J]. 太阳能学报, 2019, 40(11): 3110-3118.
ZHAO T X, LIAO H, MA X, et al.Matlab/Simulink simulation model and characteristic analysis of PV module under partial shadow[J]. Acta energiae solaris sinica, 2019, 40(11): 3110-3118.
[7] 彭乐乐, 孙以泽, 孟婥, 等. 光伏太阳能电池组件Matlab通用仿真模块[J]. 东华大学学报(自然科学版), 2011, 37(1): 90-94.
PENG L L, SUN Y Z, MENG Z, et al.Generalized photovoltaic array module using Matlab/Simulink[J]. Journal of Donghua University (natural science), 2011, 37(1): 90-94.
[8] SCHMID J, DRAPALIK M, KANCSAR E, et al.A study of power quality loss in PV modules caused by wind induced vibration located in Vienna[J]. Solar energy, 2011, 85(7): 1530-1536.
[9] 何啸, 李国富, 葛霞, 等. 漂浮式光伏发电装置在海浪影响下的光照性能研究[J]. 工程设计学报, 2014, 21(6): 545-549.
HE X, LI G F, GE X, et al.Analysis of irradiation on floating solar panels affected by ocean waves[J]. Chinese journal of engineering design, 2014, 21(6): 545-549.
[10] KO Y Z, GENG X D, LAI Y Y, et al.Moving vehicle attitude tracking algorithm based on MEMS inertial navigation system[C]//2018 IEEE 1ST International Conference on Micro/Nano Sensors for AI, Healthcare and Robotics(NSENS), Shenzhen, China, 2018.
[11] SONG Q, ZHANG Z J, WANG W.Design of two-channel hybrid filter banks based on power-complementary structure[J]. IEEE international symposium on microwave, 2011, 10(1): 351-354.
[12] PENG L L, ZHENG S B, CHAI X D, et al.A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances[J]. Applied energy, 2018, 210(1): 303-316.
[13] 邱纯, 蔡涛, 段善旭, 等. 任意辐射强度与温度下硅太阳电池模型参数的计算方法[J]. 太阳能学报, 2013, 34(9): 1626-1632.
QIU C, CAI T, DUAN S X, et al.Extraction of solar cell model parameters under arbitrary irradiance and cell temperature[J]. Acta energiae solaris sinica, 2013, 34(9): 1626-1632.
[14] 彭乐乐, 孙以泽, 林学龙, 等. 工程用太阳电池模型及参数确定法[J]. 太阳能学报, 2012, 33(2): 283-286.
PENG L L, SUN Y Z, LIN X L, et al.Engineering model and parameters determination method of photovoltaic cell and array[J]. Acta energiae solaris sinica, 2012, 33(2): 283-286.
[15] PENG L L, SUN Y Z, MENG Z, et al.A new method for determining the characteristics of solar cells[J]. Journal of power sources, 2013, 227(1): 131-136.
[16] 田睿, 孟海东, 陈世江, 等. RF-AHP-云模型下岩爆烈度分级预测模型[J]. 中国安全科学学报, 2020, 30(7): 166-172.
TIAN R, MENG H D, CHEN S J, et al.Prediction model of rockburst intensity classification based on RF-AHP-Cloud model[J]. China safety science journal, 2020, 30(7): 166-172.
[17] SARDER P, SCHIERDING W, COBB J P, et al.Estimating sparse gene regulatory networks using a bayesian linear regression[J]. IEEE transactions on nanobioscience, 2010, 9(2): 121-131.
[18] 宋志坤, 任海星, 胡晓依, 等. 动车组车轮多边形磨耗发展历程模拟及车轮粗糙度的影响[J]. 铁道学报, 2021, 43(6): 23-28.
SONG Z K, REN H X, HU X Y, et al.Research on development process simulation and influencing factors of polygonal wear of high-speed train wheels[J]. Journal of the China Railway Society, 2021, 43(6): 23-28.
[19] 张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21): 118-124.
ZHANG Y J, YANG L F, GE S Y, et al.Short-term photovoltaic power forecasting based on Kmeans-SVM algorithm and support vector machine[J]. Power system protection and control, 2018, 46(21): 118-124.
[20] 许启慧, 顾光芹, 申彦波, 等. 基于SMARTS模式计算河北省太阳总辐射的误差分析[J]. 太阳能学报, 2021, 42(5): 335-342.
XU Q H, GU G Q, SHEN Y B, et al.Error analysis of calculation for solar radiation based on SMARTS mode in Hebei Province[J]. Acta energiae solaris sinica, 2021, 42(5): 335-342.

基金

国家自然科学基金(51907117; 51975347); 上海市科技计划(22010501600)

PDF(2420 KB)

Accesses

Citation

Detail

段落导航
相关文章

/